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Equation of states for classical Coulomb systems: Use of the Hubbard-Schofield approach

J. Ortner
Institut für Physik, Humboldt Universita¨t Berlin, Invalidenstrasse 110, 10115 Berlin, Germany

~Received 10 September 1998!

An effective method based on the Hubbard-Schofield approach@Phys. Lett. A40, 245 ~1972!# is developed
to calculate the free energy of classical Coulomb systems. This method significantly simplifies the derivation
of the cluster expansion. A diagrammatic representation of the cluster integrals is proposed. Simple rules
providing the leading order in densityn of each diagrammatic contribution are found. We calculate then3

contribution and recover the results at the ordern5/2 obtained by the traditional method of resummation of
diverging Mayer bonds.@S1063-651X~99!13905-9#

PACS number~s!: 05.20.Gg, 05.70.Ce, 52.25.Kn
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I. INTRODUCTION

This paper is adressed to the study of the virial expans
of the Helmholtz free energy~hereafter the free energy! for a
classical Coulomb system. We consider a multicompon
system of pointlike ions embedded in a neutralizing ba
ground. Because of the long-range Coulombic nature of
interaction potential between two charges the correspon
virial expansion Mayer graphs@1# diverge. In the traditional
method these long-range divergencies are removed via
chain resummations introduced by Mayer@2# and Salpeter
@3# and further developed by the works of Meeron@4# and
Abe @5#. To avoid complicated calculations related to t
chain resummation we present in this paper an alterna
method of calculation of classical Coulomb system therm
dynamic functions.

We show in this paper that the earlier results can be
tained much more easily using the method of collective v
ables and integral transformations. Moreover, this met
makes it possible to obtain the free energy of a class
plasma system in a systematic manner up to an arbit
order ~at least in principle!. In addition, this method is ca
pable of describing not only the low-density limiting therm
dynamic behavior of a Coulomb system but also the reg
of critical density of Coulomb fluids and that of a strong
coupled plasma. However, in this paper we will restrict o
considerations to the low-density region of a classical
mixture.

The method of collective variables is a powerful tool
investigation of both classical and quantum Coulomb s
tems. There were two basic lines in this method mainly
veloped already in the 1950s. The first line starts with
initial plasma Hamiltonian, being the sum of the charg
kinetic energy and the interaction potential between th
and converts it into the collective variable Hamiltonian usi
the canonical transformations@6#. The second line@7,8#
starts from the configurational integral of individual pa
ticles. Certain transformations lead then to the configu
tional integral expressed through collective variables.

Using the first approach the physical processes can
interpreted in terms of the collective variables. Thus
plasma oscillations are represented as oscillations of the
sity fluctuations’ Fourier components. Following the seco
general line it is possible to obtain an expansion of the c
PRE 591063-651X/99/59~6!/6312~16!/$15.00
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ter integral in a systematic manner.
Using the formal representation of the configurational

tegral in terms of the collective variables Zubarev@7# and
Juchnowskij@8# gave a cluster expansion of the free energ
The transformation from the individual~i.e., the position of
the particles! to the collective coordinates~i.e., the Fourier
transforms of the density fluctuations! is performed via the
corresponding Jacobian. Within the random phase appr
mation for the Jacobian one arrives at the Debye-Hu¨ckel ap-
proximation for the free energy@7#, and a systematic expan
sion of the Jacobian leads to the cluster expansion of the
energy@8,9#. However, this method is still cumbersome.

By use of integral transformations the method of colle
tive variables has become technically more feasible. H
instead of a Jacobian transformation an identity is u
which expresses the Coulomb interaction in terms of exte
interactions@10–12#. As for Coulomb systems this exact ve
sion of the mean field idea of Debye and Hu¨ckel leads to the
sine-Gordon~SG! representation of the configurational int
gral @12–14#. By virtue of a rigorous mathematical proof
was shown that the SG transformation produces a clu
expansion of a system with long-range interactions@15#. Fur-
ther, the SG theory of Coulomb gas was used to analyze
metal-insulator transition@16,17# and Coulomb criticality
@18#. Such a method of analysis of the Coulomb critical
was claimed to be the most promising@19#. However, the SG
representation in the pure Coulomb version is applica
only for lattice models~with possibly vanishing lattice con
stant! and for pointlike charges.

A hybrid method combining the advantages of t
Zubarev-Juchnowskij approach with that of Stratonovic
Hubbard, and Kac was developed in Ref.@20#. Here the par-
ticle interactions are divided into long- and short-range int
actions. Thus short-range repulsive interactions such as,
hard core repulsions, are introduced in a natural way. Us
the Stratonovich-Hubbard-Kac transformation the origin
system with both types of interactions is mapped onto a
erence system with short-range interactions only. In cont
to the SG theory the Hubbard-Schofield~HS! approach is
capable of performing off-lattice calculations. Further, in t
HS approach the cumulant expansion is used to map
Hamiltonian of the original system~a nonionic or ionic fluid!
onto an effective magneticlike Hamiltonian. Since the ma
netic system Hamiltonian can be recast into the Land
6312 ©1999 The American Physical Society
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PRE 59 6313EQUATION OF STATES FOR CLASSICAL COULOMB . . .
Ginzburg-Wilson form@23# such a representation is ver
convenient for the analysis of both ordinary fluids@21# and
charged hard sphere system criticality@22#. To our knowl-
edge the HS approach was first applied to a one-compo
plasma in Ref.@24#.

Despite the significant success of the method of collec
coordinates in describing Coulomb systems the low-den
limit of Coulomb systems was mainly studied by tradition
methods of statistical physics@25#. Starting with the charging
formula for the free energy an expansion in terms of ordin
Mayer functions can be found. However, in the case of C
lomb systems the Mayer functions diverge. Expanding
Mayer function in powers of the Coulomb potential one c
collect the Mayer series into special subseries and perfor
partial summation of Mayer bonds. The resummed Ma
bond is representable through the screened Coulomb po
tial and is integrable. Thus the sum of all ring diagrams giv
the Debye-Hu¨ckel approximation for the free energy. Pic
ing up in all diagrams the chain of Mayer bonds leading
the screened potential and ordering all diagrams by the n
ber of vortices the cluster expansion for the free energ
obtained. The virial expansion up to the ordern5/2 (n being
the number density of ions! was found within this method
@5,26,27,25#. However, to perform this procedure a numb
of very refined diagrammatic transformations are requi
@25#. Various first-principles formalisms based on the ch
resummation of Mayer bonds have been used to gener
the virial expansion of classical Coulomb systems to the c
of quantum plasmas. First, the method of effective potent
introduced by Morita@28# for quantum systems has bee
applied by Ebeling to the Coulomb case@29#. A renewed
interest in the exact calculation of thermodynamic functio
for weakly coupled quantum plasmas beyond the Deb
Hückel limiting law has been observed recently. The vir
expansion for the free energy up to the ordern5/2 in the
density was derived using the Feynman-Kac formalism@30#
and the method of Green’s functions@31#, respectively. The
latter method involves an additional expansion with resp
to the square of chargee2. Confirming and completing the
earlier results by Haga@26#, Friedman@25#, DeWitt @32#, and
Ebeling @29#, both approaches arrived at the same res
Therefore the virial equation of state for both classical a
quantum Coulomb systems is now generally accepted
known up to ordern5/2.

In this paper we show that the density expansion o
classical Coulomb system can be obtained much more e
using the method of collective coordinates. Like Zubarev a
Juchnowskij we rewrite the partition function in terms of t
collective variables. In contrast to them we will not use t
Jacobian transforming the space coordinates of individ
particles into the collective variables. Instead, we repres
the configurational integral of the Coulomb system throu
the configurational integral of a noninteracting system in
ternal fields. Further, following the line of Hubbard an
Schofield we employ the cumulant expansion. This enab
us to rewrite the configurational integral in a similar way
the partition function for the magnetic system having
Ising-like Hamiltonian. The coefficients of the effectiv
magneticlike Hamiltonian are expressible in terms of
ideal gas correlation functions and are perfectly known. P
forming a perturbation expansion in terms of the anharmo
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contributions to the effective Hamiltonian one directly o
tains the cluster expansion of the configurational integral
of the free energy of a classical plasma without bond resu
mation~Sec. II!. Instead the bare Coulomb interaction is a
tomatically screened in the HS approach. Ultimately, the
tegrals that determine the virial coefficients in the H
method are the same as those which appear in the more
ditional Abé-Meeron-Friedmann approach. In this sense
HS method may be considered as another evidence of
fact that all virial coefficients are expressible in terms
Mayer-like graphs built with screened bonds. Arriving at t
virial equation of state it will be shown that the method
collective variables in the Hubbard-Schofield representa
is capable of describing not only the critical behavior b
also the low-density limit of Coulomb systems.

Additionally, there are some basic ideas in the literatu
on how to generalize the method of collective variables
the case of a strongly coupled plasma. We mention here
calculation of ‘‘first-principles’’ expressions for the free en
ergy over the entire density region of classical plasm
@33,24#. In this approach the static structure factor in t
Debye-Hückel form is employed; strong coupling effects a
involved by introducing an upper bound for the collecti
variable wave vector, as was done by Debye in the theor
specific heats of solids.

Further approaches are devoted to the study of dyna
properties of coupled Coulomb systems using the repre
tation of the plasma Hamiltonian into collective variables.
a rather incomplete list we mention the approaches in R
@34,35# based on the Mori-Zwanzig theory@36,37# ~or the
memory function formalism!, the approaches based on th
theory of moments@38#, and the approach based on th
quasilocalized charge approximation@39#.

The present paper is organized as follows. In Sec. II,
apply the approach of Hubbard and Schofield@20# to map the
original Hamiltonian of the classical Coulomb system onto
magneticlike Hamiltonian. The coefficients of the magne
Hamiltonian obtained are expressed via the ideal gas st
ture factors, and are calculated exactly. Expanding the an
monic contributions of the magnetic Hamiltonian we obta
the cluster expansion of a classical plasma.

The cluster expansion is the starting point for the dens
expansion of the classical Coulomb system. Explicit calcu
tions are carried out up to the ordern3 in Sec. III. Compari-
son to previous results is carried out briefly.

II. CONFIGURATIONAL INTEGRAL

Consider a classical plasma consisting ofM sorts of ions
with Na ions of a given speciesa with massesma and
chargesea . In what follows we will omit the summation
bounds in the summation over the particle typesa if the
summation is carried out from 1 toM. The total number of
particles isN5(aNa . The system of ions is immersed into
neutralizing background. The plasma system with total v
umeV and temperature in energy unitsT51/b is described
by the interaction potential

U~rW1 , . . . ,rWN!5
1

2 (
a,b

(
i 51

Na

(
j 51

Nb

vab~rW i ,rW j !. ~1!
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6314 PRE 59J. ORTNER
As far as we consider pointlike ions the interaction poten
between two particles is given by the Coulomb potential

vab~rW i ,rW j !5
eaeb

urW i2rW j u
. ~2!

Introducing now the collective variables of the plasma s
tem, the Fourier transforms of the charge density,

%kW5~n!21/2(
a

ea (
i 5N a

Na 1 Na

eikW•rW i, ~3!

wheren5(aea
2Na , andNa5(b51

a21Nb .
The interaction potential can be expressed in terms of

collective variables,

bU5
1

2 (
kWÞ0

a~k!@%kW%2kW21#, ~4!

with the notation a(k)5k2/k2 and k25@(4p)/
(VT)#(aea

2Na being the square of the inverse Debye radi

The contribution withkW50 cancels due to the presence
the background.

Our aim now is to calculate the free energy of the plas
system,

F52T ln Zid Zc . ~5!

HereZid is the ideal part of the partition integral, whereas t
configurational integral is given by

Zc5
1

VN E drW1•••drWN e2bU(rW1 , . . . ,rWN). ~6!

The configurational integral is expressed now through
collective variables@7,8#

Zc5expS 1

2 (
kWÞ0

a~k!D K expS 2
1

2 (
kWÞ0

a~k!%kW%2kW D L ,

~7!

where the angular brackets denote averaging with respe
an ideal gas system, i.e.,

^•••&5
1

VN E drW1•••drWN~••• !. ~8!

Using the identity

expS 2
1

2
a2x2D5~2pa2!21/2 E

2`

`

expS 2
1

2

y2

a2D
3exp~2 ixy!dy ~9!

one expresses the configurational integral of the interac
system through the configurational integral of a system
noninteracting particles moving in an external fieldwkW @20#,
l

-

e

.

a

e

to

g
f

Zc5expS 1

2 ( a~k! D)
kW

H @2pa~k!#21/2 E dwkWJ
3expF2

1

2 S ( a~k!21wkWw2kW D G K ei(
kW

%kWw2kWL .

~10!

Note that the field variablewkW ~as well as%kW) is a complex
number,wkW5wkWc1 i wkWs with realwkWc andwkWs . Therefore in
Eq. ~10! the product of integrals has to be understood in
following manner:

E E dwkWdw2kW5E
2`

` E
2`

`

dwkWcdwkWs and

wkWw2kW5uwkWcu21uwkWsu2. ~11!

In what follows we will use the shorter notations of Eq.~10!.
Regard the functional

C@w#5K expH i(
kW

%kWw2kWJ L . ~12!

The moments of%kW ~i.e., the structure factors of an ideal ga!
can be obtained by functional differentiation

^%kW1
%kW2

•••%kWs
&5~2 i !s

]sC@w#

]w2kW1
]w2kW2

•••]w2kWs

U
w[0

.

~13!

Consider further the functional

Q@w#5 ln C@w#. ~14!

The Taylor expansion ofQ defines the cumulants of% @40#,

Q@w#5 (
n51

`
i n

n! (
kW1 , . . . ,kWn

un~kW1 , kW2 , . . . ,kWn!

3w2kW1
w2kW2

•••w2kWn
, ~15!

i.e., the cumulants of orders can be obtained by the func
tional derivative

us~kW1 , kW2 , •••, kW s!5~2 i !s
]sQ@w#

]w2kW1
]w2kW2

•••]w2kWs

U
w[0

.

~16!

The first four cumulants read

u1~kW !5^%kW&50, kWÞ0W ~17!

u2~kW1 ,kW2!5^%kW1
%kW2

&, kW1Þ0W ,kW2Þ0W

u3~kW1 ,kW2 ,kW3!5^%kW1
%kW2

%kW3
&, kW1Þ0W ,kW2Þ0W ,kW3Þ0W ,
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PRE 59 6315EQUATION OF STATES FOR CLASSICAL COULOMB . . .
u4~kW1 ,kW2 ,kW3 ,kW4!5^%kW1
%kW2

%kW3
%kW4

&2^%kW1
%kW2

&^%kW3
%kW4

&

2^%kW1
%kW3

&^%kW2
%kW4

&

2^%kW1
%kW4

&^%kW2
%kW3

&,

kW1Þ0W , . . . ,kW4Þ0W .

In general one expresses the cumulants of or
s us(kW1 ,kW2 , . . . ,kWn) through the ideal gas structure factor
orders ^%kW1

%kW2
•••%kWs

& minus all combinations of structur
factors of order less thans.

Calculate now the ideal gas structure factor of ord
n (kW1Þ0W , . . . ,kWnÞ0W ) @41#.

^%kW1
%kW2

•••%kWs
&5n2n/2

1

VNE drW1•••drWN

3 (
a1 , . . . ,an

ea1
ea2

•••ean

3 (
i 15Na1

11

Na1
1Na1

••• (
i n5Nan

11

Nan
1Nan

3exp$ i ~kW1rW i 1
1•••1kWnrW i n

!%.

~18!

In the thermodynamic limit~i.e., neglecting terms of the or
der 1/N) we obtain

^%kW1
%kW2

•••%kWs
&5N2(n22)/2cn dkW11•••1kWn , 0 , ~19!

with dab being the Kronecker delta, and

cn5~N/n!(n22)/2n21 (
a

ea
nNa . ~20!

For the cumulants we then have

un~kW1 , kW2 , . . . ,kWn!5N2(n22)/2cn dkW11•••1kWn,0 ,

(
i PG

kW iÞ0W , G,$1,2, . . . ,n%. ~21!

The conditions in Eq.~21! reflect the facts that the sum of a
n wave vectors being the argument ofun(kW1 , kW2 , . . . ,kWn)
equals zero, whereas all the sums of wave vectors contai
less thann wave vectorskW i must not be equal to zero.

Inserting Eq.~21! into Eq. ~15!, and using the definition
of the functionalsQ @Eq. ~14!# andC @Eq. ~12!#, we obtain

K ei(
kW

%kWw2kWL 5expS (
n51

`
i n

n! ( 8
kW1 , . . . ,kWn

N2(n22)/2cn

3dkW11•••1kWn ,0 w2kW1
w2kW2

•••w2kWnD ,

~22!
r

r

ng

where the prime on the summation sign indicates the trun
tion, i.e., the wave vectorskW i are chosen in such a way tha
all the sums of less thann wave vectors must not be equal
zero.

Substituting Eq. ~22! into Eq. ~10! we obtain the
Hubbard-Schofield representation of the configurational in
gral for the classical ion mixture@20#

Zc5expS 1

2 ( a~k! D)
kW

H @2pa~k!#21/2 E dwkWJ e2 H̃[w] ,

~23!

with the effective Hamiltonian

H̃@w#5 (
n51

`

( 8
kW1 , . . . ,kWn

wn~kW1 , kW2 , . . . ,kWn!

3w2kW1
w2kW2

•••w2kWn
, ~24!

and

w150,

w25
1

2
dkW11kW2 , 0 F kW1

2

k2
11G ,

w35
i c3

3! N1/2
dkW11kW21kW3 , 0 , ~25!

A

wn52
i n cn

n! N(n22)/2
dkW11kW21•••1kWn , 0 .

We rewrite the configurational integral in the form

Zc5)
kW

H exp@a~k!/2#

A2pa~k!
E dwkW

3expF2
1

2
@a21~k!11#wkWw2kWG J e2 (n53

` Hn,

~26!

where theHn are defined by

Hn5
i n cn

n! N(n22)/2 ( 8
kW1 , . . . ,kWn

dkW11kW21•••1kWn ,0

3w2kW1
w2kW2

•••w2kWn
, ~27!

with cn from Eq. ~20!. TheHn contain the anharmonic con
tributions of the auxiliary field variableswkW into the configu-
rational integral. Neglecting the anharmonic contributio
one arrives at the Debye-Hu¨ckel approximation for the free
energy first derived within the framework of collective var
ables by Zubarev@7# ~see the next section!. Notice that the
presence of the Debye potential in the covariance of
Gaussian measure over thewkW ’s is the reason for the auto
matic screening within the present approach.
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6316 PRE 59J. ORTNER
In what follows in order to obtain the cluster expansi
within the HS approach we have to perform manipulatio
analogous to those in the Zubarev-Juchnowskij approa
Expanding the exponential exp$2 (n53

` Hn% one represents
the configurational integral as

Zc5)
kW

H exp@a~k!/2#

A2pa~k!
E dwkW expF2

1

2
@a21~k!

11#wkWw2kWG J $11C 181C 281C 381C 481•••%, ~28!

where the abbreviations

C 185H31H41H51•••,

C 285
1

2!
$@H3H31H4H41•••#

12@H3H41H3H51•••1H4H51•••#%, ~29!

C 385
1

3!
$@H3H3H31H4H4H41•••#

13@H3H3H41H3H3H51•••1H4H4H51•••#

16@H3H4H51H3H4H6•••#%

are introduced. Equation~28! is an infinite sum of products
of integrals of the type

E dwkW expF2
1

2
@a21~k!11#wkWw2kWG@wkW#

n @w2kW#
m.

~30!

The result of the integration overwkW differs from zero only if
n5m in Eq. ~30!. Having this in mind and taking into ac
count that inHn the sum over thekW ’s is truncated, one finds
that all linear powers ofHn ~i.e., C 18) and also a lot of prod-
ucts ofHn in the higher orderCm8 (m . 1) vanish under the
integration overwkW . In general we have to choose produc
of

wn1
~kW11, . . . ,kW1n1

! ••• wns
~kW s1 ,kW sns

!•••

3w2kW11
w2kW12

•••w2kW1n1
••• w2kWs1

w2kWs2
•••w2kWsns

~31!

@see Eqs.~24! and ~25!# such that one can pair allwkW i j
with

otherwkW lm
wherebyiÞ l .

Consider as an example the pairing of field variables
the lowest nonvanishing product (1/2)H3H3 contributing to
C 28 . In this case the integrand is
s
h.

n

)
kW

H exp@a~k!/2#

A2pa~k!
E dwkW expF2

1

2
@a21~k!11#wkWw2kWG J

3
3!

2

i 3

3!
c3N21/2

i 3

3!
c3N21/2 ( 8

kW1 ,kW2 ,kW3

3~wkW1
wkW2

wkW3
!~w2kW1

w2kW2
w2kW3

!dkW11kW21kW3 ,0

5)
kW

H exp@a~k!/2#

Aa~k!11
J ~21!3

233!
N21c3

2 (
kW1 ,kW2 ,kW3

3
dkW11kW21kW3 ,0

@a21~k1!11#@a21~k2!11#@a21~k3!11#
. ~32!

It was taken into account here that one has 3! possibilitie
pair the field variableswkW in the productH3H3. Notice also
that in the right hand side of Eq.~32! the truncation in the
sum overkW1 ,kW2 ,kW3 is omitted. Performing in Eq.~28! the
integration over the field variableswkW one arrives at the fol-
lowing formula for the configurational integral:

Zc5)
kW

H exp@a~k!/2#

Aa~k!11
J $11C11C21C31C41•••%,

~33!

where theCn ~without prime! denote the sum of all product
of n functionsHi ( i 53,4, . . . ) after integration over the
field variables. Having in mind the above rules for the pa
ing of field variables under the integration sign one finds t
all the contributions intoC1 vanish, the second clusterC2 is
composed of the terms (HnHn), n>3 only, whereas in the
third cluster C3 only the combinations (HnHmHl)(3<n
<m< l ) with n1m. l andn1m1 l being an even numbe
remain. We obtain the following structure for the first thr
clusters:

C150,

C25
1

2!
$@~H3H3!1~H4H4!1•••#% ~34!

C35
1

3!
$@~H4H4H4!1~H6H6H6!1•••#

13 @~H3H3H4!1~H4H4H6!1•••

1~H4H5H5!1•••#16@~H3H4H5!

1~H3H5H6!•••#%.

Here ( ) means that the integration over the field variablew
was performed.

Following Juchnowskij and Golovko@9# we introduce a
diagrammatic representation of the expressions appearin
the clustersCn . The diagrams consist of lines and points. T
connection of lines and points is called a vortic. An unpair
Hn contribution occurring in the clustersC n8 can be symbol-
ized by a vortic withn open lines
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PRE 59 6317EQUATION OF STATES FOR CLASSICAL COULOMB . . .
whereas a pairedHnHn contributing to the clustersCn can
be represented by the following diagram:

.

Comparing the diagrammatic representation with the a
lytic expression from Eq.~32! one can establish the follow
ing rules for the diagrams.

~1! Outgoing lines are associated with a wave vectorkW i ,
incoming with2kW i .

~2! A vortic with outgoing lines

represents the factor

i n cn

N(n22)/2
dkW11kW21•••1kWn ,0 .

~3! n lines connecting two points replace the notations

1

n!

1

@a21~k1!11# @a21~k2!11# ••• @a21~kn!11#
.

~4! One has to count the number of topological identi
diagrams which differ only by the numeration of the poin
~In what follows this number will be shown explicitly.!

~5! Summation over the wave vectors has to be p
formed.

With the thus defined diagrams one easily expresses
clustersCn . From Eq.~34! and calculations analogous to th
in Eq. ~32! one finds that the clusterCn is given by the sum
of all possible diagrams satisfying the following condition

~1! The diagrams consist ofn points and closed lines.
~2! The minimal number of outgoing and incoming line

in each point of a corresponding diagram equals 3.
~3! Self-truncation is forbidden, i.e., closed loops are a

sent, each line connects two different points of a diagram
addition a connected diagram or a connected subdiagram
disconnected diagram should have the following prope
By cutting an arbitrary number of connections of a cert
~but arbitrary! point with other points but keeping at lea
one connection one remains with a connected diagram~or
subdiagram! still. @This rule represents the prime in E
~27!.# For example, due to this rule the following diagram
should be excluded:

.

Since our final aim is the calculation of the free energy
rewrite Eq.~33! in a more convenient form,
a-

l
.

r-

he

-
n
f a
.

e

Zc5)
kW

H exp@a~k!/2#

Aa~k!11
J exp$S21S31S41•••%. ~35!

The clusterSn can be expressed by the same diagrams
the clusterCn with the following additional condition.

~4! From all the diagrams contributing toSn we have to
choose only irreducible diagrams, i.e., those which do
represent a combination of lower order diagrams.@The latter
arise in Eq.~33! by expanding the exponent in Eq.~35!#. For
example, the diagram

contributes toC4 but does not contribute toS4.
The first cluster integralsSn will be considered in the nex

section.

III. VIRIAL EXPANSION

Our aim now is to obtain the virial expansion for the fre
energy of the ion mixture. The basic expression that is u
as a starting point is the cluster expansion for the interac
part Fc of the Helmholtz free energy per volumeV in units
of T51/b,

bFc

V
52 S f DH1

1

V (
n52

`

SnD , ~36!

where

f DH52
1

2V (
kW

$ a~k!2 ln@a~k!11#%5
k3

12p
~37!

is the leading Debye-Hu¨ckel contribution to the free energ
@7#.

In the following part of this section we will consider th
first cluster integrals and extract the leading terms of
density expansion within each cluster integral.

A. Second cluster integral

The second cluster integral is given by the sums of d
grams

~38!

or in analytic representation
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S25
1

2
(
n53

` ~21!ncn
2

n!Nn22
E dkW1 dkW2 ••• dkWn

~2p!3n

dkW11kW21 •••1kWn ,0

@k1
2/k211# @k2

2/k211# . . . @kn
2/k211#

. ~39!
rie

ra

a
an

ac

ze

b

in

ster

the
by
Substituting thecn values from Eq.~20!, and using the con-
volution theorem and the expression for the inverse Fou
transformation of

E d kW

~2p!3

4p l ab

k21k2
eikW•rW5gab~r ![

l ab

r
e2kr , l ab5eaebb,

~40!

we find the familiar expression for the second cluster integ

S25(
a,b

NaNb

2V (
n53

`
~21!n

n! E drW @gab~r !#n

5(
a,b

NaNb

2V E drW FFab~r !2
1

2
gab

2 ~r !G , ~41!

where the generalized Mayer function

Fab5e2gab~r !211gab~r ! ~42!

is introduced.
Thus performing the inverse Fourier transform one c

establish the following rules of evaluation of a cluster exp
sion graph in the coordinate representation:

~1! Each point is associated with a particle of speciesa,
and provides an integration over the coordinate sp
n ca * drWa , the total particle densityn5N/V, and the par-
ticle concentration of speciesa, ca5Na /N, are introduced
here.

~2! l solid lines connecting the pointsa andb give a factor

@(21)l / l ! # @gab(r ab)# l wherer ab5urWa2rWbu.
~3! Introducing a graphic representation of the generali

Mayer function,

~43!

one associates a bond

connecting the pointsa and b with the Mayer function
Fab(r ab)5exp@2 gab(rab)#211gab(rab).

~4! Finally, summation over the particle types has to
performed.

Given these rules one represents the second cluster
gral in the following manner:

~44!
r

l

n
-

e

d

e

te-

In order to get the density expansion of the second clu
integral we expand the corresponding expression in Eq.~41!
in powers ofk. Up to the ordern3 we get

S252p(
a,b

NaNb

V E
0

`

drr 2S F 2
1

6 S l ab

r D 3

~e23kr21!

1 f ab~r !G1F 1

4! S l ab

r D 4

~e24kr2114kr !1 l abk f ab~r ! G
1H 2

1

5! S l ab

r D 5S e25kr2115kr 2
25

2
kr D

1
1

2
~ l abk!2f ab~r !2

1

2
l abk

2r F f ab~r !1
1

6 S l ab

r D 3G J D ,

~45!

where the truncated bond

f ab~r !5expS 2
l ab

r D211
l ab

r
2

1

2S l ab

r D 2

~46!

has been introduced.
Similar calculations of the second cluster integral at

order n3 for a quantum plasma have been performed
Kahlbaum@42# and Ortner@43#.

A straightforward calculation of the integrals in Eq.~45!
leads to the result

S25V H n2(
a,b

cacbl ab
3 Fp3 ln k l ab1a2G

1n2k(
a,b

cacbl ab
4 Fp3 ln k l ab1b2G

1n2k2(
a,b

cacbl ab
5 F5p

24
ln k l ab1c2G J , ~47!

with the numerical constants

a25
p

3 F2CE2
11

6
1 ln 3G50.439 519 . . . ,

b25
p

3 F2CE2
17

6
1 ln 4G520.306 41 . . . , ~48!

c25
5p

24 F2CE2
203

60
1 ln 5G520.4054 ,
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CE being the Euler-Mascheroni constant,CE

50.577 215 66 . . . .
Thus we recover the result of Abe@5# ~i.e., the density

expansion of the free energy up to the ordern2) and have
written down all terms of the ordern3 andn3 ln n stemming
from the second cluster integral.
ye
m

th

o
te

it
f

s
it

nl
e

B. Third cluster integral

Following the general rules of construction of the clus
integrals of arbitrary order one expresses the third clu
integral through the following sum of diagrams@9#:
~49!
ble

arti-
ke
omb
ort
ical
di-

ated
t

tter

n
m-

of a
ons
e

that

-

he
With the graphic representation of the generalized Ma
function we represent the third cluster integral in the co
pact manner@8,25,44#

~50!

Using the diagrammatic rules one easily writes down
explicit expression for the third cluster integral

S35
n3

6 (
a,b,c

cacbccE drWadrWbdrWc

@23gab~r ab!Fac~r ac!Fbc~r bc!

1Fab~r ab!Fac~r ac!Fbc~r bc!#. ~51!

However, we are interested in the density expansion
the free energy. The third cluster integral, like all clus
integrals, is a function of densityn. We formulate now some
general rules of picking out the leading terms of a dens
expansion of a certain cluster integral. A graph made om
points andl solid lines ~i.e., it is a contribution to themth
cluster integral! is proportional tonm*drW1•••drWm gl . Here
the occurrence of a product ofl Debye functionsg with
different arguments is sketched only schematically. Sub
tuting xW i5krW i one finds that the above graph gives a dens
contribution to the free-energy density@with the additional
factor 1/V, see Eq.~36!# of the order

nmk3/2k23mk l;n3/21 l /22m/2.

It should be mentioned that this simple estimate is valid o
as far as the remaining dimensionless integral is converg
r
-

e

f
r

y

ti-
y

y
nt.

Especially, it is not correct when bondsgp(r ) of one argu-
mentr with p>3 are present. These bonds are nonintegra
due to the singularity at short distancesr. However, these
short-range divergencies are spurious. They are just an
fact of the expansion of Boltzmann factors in the Mayer-li
graphs in powers of the screened or unscreened Coul
potential. Since all Boltzmann factors are integrable at sh
distances it is always possible to eliminate these unphys
divergencies at any order by a suitable collection of the
vergent contributions@45#. For example, thegp(r ) bonds
(p>3) may be resummed into the bondC2g2/2. At low
densities, this bond can be replaced by the bare trunc
bond f (r ) @see Eq.~46!#. This is an integrable bond excep
for the logarithmic divergency at large distances. The la
divergency can be finally removed using the bond

2
1

6 S l ab

r D 3

~e23kr21!1 f ab~r !,

which leads to the appearance of the logarithmic term lk.
This is just the content of the renormalization procedure e
ployed in Eq.~45!. It will be used in the remainder of this
section. Nevertheless, the above estimation of the order
cluster integral is correct as far as the leading contributi
of the mth (m>3) cluster integral are looked for. Thes
contributions are obtained with bondsg and g2 only for
which the scaling analysis is applicable. One also proves
the minimal numberl min(m) of solid lines of a graph contrib-
uting to themth cluster integral is 2m2@m/2# with @l# be-
ing the integer number ofl. Therefore the leading contribu
tion of themth cluster integral is of the order of

1

2 S 31m2Fm

2 G D .

The leading contribution from the third cluster integral is t
graph with five solid lines@stemming from theH3H3H4
term, see Eq.~34!#,
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and gives a contribution to the ordern5/2 @26#,

S 3
l 52b3

Vn3

k (
a,b,c

cacbccl abl ac
2 l bc

2 . ~52!

The numerical constantb3 ~an integral representation wa
already given by Haga@26#! is calculated in Appendix A. It
is expressible through the Euler dilogarithm Li2(x)
5(k51

` xk/k2,uxu<1 and equals, in accordance with@42#,

b352p2Fp2

12
1Li2S 2

1

3D G510.134 77 . . . . ~53!

Following the general scheme then3 terms should be ob
tained from all graphs with six solid lines, i.e., from th
diagrams

~54!

representing theH4H4H4 andH3H4H5 terms.
However, the corresponding integrals are divergent. T

divergencies occur at short distances and are connected
a singular accumulation ofg2 bonds or with the occurrenc
of a bondg3. These short-range divergencies are unphys
and can be removed by a renormalization procedure as
cussed above. Regard therefore the two corrections to
leading contributionS 3

l ,

d1S35
n3

6 (
a,b,c

cacbccE drWadrWbdrWc

3Fab~r ab!Fac~r ac!Fbc~r bc! ~55!

and

d2S352
n3

2 (
a,b,c

cacbccE drWadrWbdrWc gab~r ab!

32 FFac~r ac!2
1

2
gac

2 ~r ac!GFbc~r bc! ~56!
e
ith

al
is-
he

and expand the corresponding contributions in terms ofk.
First, consider the termd1S3. As is shown in Appendix B

we get, up to the ordern3,

d1S352Vn3 (
a,b,c

cacbccl ab
2 l ac

2 l bc
2 F p4

12
ln k l ac1c3a G ,

~57!

where the constant

c3a5
p4

12F lim
d→0

16p E
0

1/ddk

k
arctan3

k

2
12p4 ln d1CE2

3

2G
522.894 76 . . . ~58!

has been introduced. Consider now the termd2S3. Up to the
ordern3 we get~see Appendix B!

d2S35Vn3 (
a,b,c

cacbccl abl ac
3 l bc

2 F2p2

3
ln 2k l ac

1
8p2

3 S CE2
17

12
1

1

2
ln 3D ln k l ac1c3bG , ~59!

with

c3b5
2p2

3 H 2@CE211 ln 3# FCE2
11

6
1 ln 3G

1 ln 3 @8 ln 223 ln 3#28 ln 222
p2

3
1

121

18
12CE

2

2
17

3
CE24Li2S 2

1

4D22Li2S 2
2

3D J
58.853 48 . . . . ~60!

Notice that the leading term ofd2S3 is of the ordern3ln 2n.

C. Fourth cluster integral

The diagrammatic representation of the fourth cluster
tegral is found from the above diagrammatic rules and rea
in accordance with@9#,
arbitrary
~61!

The dots beyond a diagram of a given type represent all diagrams constructed from the basic one by adding an
number of solid lines between points connected by two lines~for the case of outer lines! or by one line~for the case of inner
lines!. Introducing a generalized Mayer bond of second type,

Cab~r ab!5exp@2gab~r ab!#21,
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with the graphic representation

~62!

one writes the fourth cluster integral in the following manner@25,44,9#:

~63!
a

of

te
wi

n

ent
de-
C.
The leading contribution from the fourth cluster integr
are the two graphs with six solid lines~stemming from the
H3H3H3H3 term!,

~64!

According to the rules formulated in Sec. III B they are
the order ofn5/2, and give@26,25#

S 4
l 5b4

n4

k3
b6 (

a,b,c,d
cacbcccdea

3eb
3ec

3ed
3 , ~65!

with the numerical constantb45b4,a1b4,b ,

b4,a5
1

16E dx1dx2dx3 S e2x1

x1
D 2 e2x12

x12
S e2x23

x23
D 2 e2x3

x3
,

~66!

b4,b5
1

24E dx1dx2dx3

e2x1

x1

e2x2

x2

e2x3

x3

e2x12

x12

e2x13

x13

e2x23

x23
.

~67!

The constantb4,a is calculated in Appendix A. It equals

b4a52p3Fp2

12
1Li2S 2

1

3D1
4

3
ln

3

4G58.052 81 . . . .

~68!

The constantb4,b was evaluated numerically by a Mon
Carlo calculation and equals, in close correspondence
@30#,

b4,b.1.78560.001. ~69!

Consider now all diagrams with seven solid lines represe
ing theH3H3H4H4 andH3H3H3H5 terms and contribut-
ing to the ordern3.
l

th

t-

~70!

Again the first diagram in the above equation is diverg
and we may apply the renormalization procedure as
scribed in Sec. III B. The details are given in Appendix
We obtain

dS45
n4

k2
b7 (

a,b,c,d
cacbcccd

3H ea
4eb

4ec
3ed

3F4p3

9
ln k l ab2c4G2ea

5eb
3ec

3ed
3 c4eJ ,

~71!
where the constantc45c4a1c4b1c4g1c4d and c4e has
been introduced,

c4a5
4p3

9 F17

6
22CEG2

16p2

3 E
0

` dk

~k211!2

3arctan
k

2 H 3 arctan
k

3
1

k

2
ln~k219!J , ~72!

c4,b5
1

8E dx1dx2dx3S e2x1

x1
D 2 e2x2

x2

e2x3

x3

e2x12

x12

e2x13

x13

e2x23

x23
,

~73!

c4,g5
1

16E dx1dx2dx3 S e2x1

x1
D 2S e2x3

x3
D 2 S e2x12

x12
D 2 e2x23

x23
,

~74!

c4,d5
1

8E dx1dx2dx3

e2x1

x1
S e2x3

x3
D 2 S e2x12

x12
D 2 e2x23

x23

e2x13

x13
,

~75!
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c4,e5
1

8E dx1dx2dx3 S e2x1

x1
D 2 S e2x3

x3
D 2 e2x12

x12

e2x23

x23

e2x2

x2
.

~76!

The above multiple integrals forc4,b , c4,d , andc4,e can be
reduced to single or double integrals and are evaluated
numerical integration. The remaining integral is estimated
a Monte Carlo run. As a result we obtain

c4553.6660.02, c4,e526.719 . . . . ~77!
by
y

The fifth and sixth cluster integral contributing to the ord
n3 are considered in the next section.

D. Fifth and sixth cluster integrals „leading terms…

The diagrammatic representation of the fifth and six
cluster integrals is given by a huge number of basic d
grams. Thus the fifth cluster integral is represented in R
@9#. According to our aim of presenting a virial expansion
the free energy it suffices to give the leading contributions
both cluster integrals.

The leading contribution of the fifth cluster integral
given by the four graphs with eight solid lines@stemming
from theH4 (H3)4 term#,
~78!

According to the rules formulated in Sec. III B they are of the order ofn3, and give

S 5
l 5 c5

n5

k4
b8 (

a,b,c,d, f
cacbcccdcfea

4eb
3ec

3ed
3ef

3 , ~79!

with the numerical constantc55c5,a1c5,b1c5,g1c5,d .
The four constants introduced here are determined by the dimensionless integrals.

c5,a5
1

8E dx1dx2dx3dx4

e2x1

x1

e2x12

x12

e2x2

x2

e2x23

x23

e2x3

x3

e2x34

x34

e2x4

x4

e2x41

x41
, ~80!

c5,b5
1

4E dx1dx2dx3dx4 S e2x1

x1
D 2 e2x2

x2

e2x4

x4

e2x13

x13

e2x34

x34

e2x42

x42

e2x23

x23
, ~81!

c5,g5
1

16E dx1dx2dx3dx4 S e2x1

x1
D 2 S e2x2

x2
D 2 e2x13

x13

e2x3

x3

e2x34

x34
S e2x24

x24
D 2

, ~82!

c5,d5
1

4E dx1dx2dx3dx4 S e2x1

x1
D 2 e2x2

x2

e2x13

x13

e2x3

x3

e2x34

x34
S e2x24

x24
D 2

. ~83!

A numerical evaluation~the ‘‘irreducible’’ integrals were estimated by Monte Carlo simulations! gives

c55168.260.6. ~84!

In the sixth cluster integral we can pick out the contributions stemming from the (H3)6 term,

~85!

The five contributions are again of the ordern3, and give

S 6
l 52c6

n6

k6
b9 (

a,b,c,d, f ,g
cacbcccdcfcgea

3eb
3ec

3ed
3ef

3eg
3 , ~86!

with the numerical constantc65c6,a1c6,b1c6,g1c6,d1c6,e given by the five dimensionless integrals,

c6,a5
1

48E dx1dx2dx3dx4dx5 S e2x1

x1
D 2 e2x12

x12
S e2x23

x23
D 2 e2x34

x34
S e2x45

x45
D 2 e2x5

x5
, ~87!
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c6,b5
1

16E dx1dx2dx3dx4dx5 S e2x1

x1
D 2 e2x12

x12

e2x23

x23

3S e2x34

x34
D 2 e2x45

x45

e2x5

x5

e2x52

x52
, ~88!

c6,g5
1

8E dx1dx2dx3dx4dx5 S e2x1

x1
D 2

3
e2x12

x12

e2x23

x23

e2x34

x34

e2x45

x45

e2x5

x5

e2x53

x53

e2x24

x24
,

~89!

c6,d5
1

72E dx1dx2dx3dx4dx5

e2x1

x1

e2x12

x12

e2x23

x23

3
e2x34

x34

e2x45

x45

e2x5

x5

e2x52

x52

e2x14

x14

e2x3

x3
, ~90!

c6,e5
1

4E dx1dx2dx3dx4dx5

e2x1

x1

e2x12

x12

e2x23

x23

e2x34

x34

3
e2x45

x45

e2x5

x5

e2x51

x51

e2x24

x24

e2x3

x3
. ~91!
f
f

se
The numeric evaluation results in:

c65339.860.3. ~92!

According to the rules formulated in Sec. III B there a
no other terms contributing to the ordern3. Thus in this
section we have explicitly calculated all terms of the fr
energy of a classical plasma consisting of charges with
same sign and immersed in a neutralizing background u
the third order in density. The final result is given in Sec. I

IV. FINAL RESULTS AND CONCLUSIONS

The final expression for the interaction part of the Hel
holtz free-energy density to the ordern3 is obtained from Eq.
~36! by summing the corresponding contributionsS2 @Eq.
~47!#, S3 @Eqs. ~52!, ~53!, ~57!, ~58!, ~59!, ~60!#, S4 @Eqs.
~65!, ~68!, ~69!, ~71!, ~77!#, S5 @Eqs.~79!, ~84!#, andS6 @Eqs.
~86!, ~92!# with the following result:
bFc

V
52

k3

12p
2n2b3(

a,b
cacbea

3eb
3Fp3 ln k l ab1a2G2n2kb4(

a,b
cacbea

4eb
4Fp3 ln k l ab1b2G

1b3 n3k21b5 (
a,b,c

cacbccea
3eb

4ec
32b4 n4k23b6 (

a,b,c,d
cacbcccdea

3eb
3ec

3ed
3

2n3b6 (
a,b,c

cacbccea
4eb

5ec
3F2p2

3
ln 2k l ab1

8p2

3 S CE2
17

12
1

1

2
ln 3D ln k l ab1c3bG

2n2k2b5(
a,b

cacbea
5eb

5F5p

24
ln k l ab1c2G1n3b6 (

a,b,c
cacbccea

4eb
4ec

4Fp4

12
ln k l ab1c3,aG

2n4k22b7 (
a,b,c,d

cacbcccdH ea
4eb

4ec
3ed

3F4p3

9
ln k l ab2c4G2ea

5eb
3ec

3ed
3c4eJ

2c5

n5

k4
b8 (

a,b,c,d, f
cacbcccdcfea

4eb
3ec

3ed
3ef

31c6

n6

k6
b9 (

a,b,c,d, f ,g
cacbcccdcfcgea

3eb
3ec

3ed
3ef

3eg
31o~n3!. ~93!
All constants in Eq.~93! are given in Sec. III. In the case o
a one-component plasma~OCP! consisting of one sort o
ions with densityn, chargesZe, and moving in a neutralizing
background all thermodynamical functions may be expres
in terms of the plasma parameterG5bZ2e2(4pn/3)1/3 only.
For the excess internal energy defined by

u5b
]~bFc /N!

]b

we obtain from Eq.~93!
d

u~G!5p0G3/21p1G3 ln G1p2G31p3G9/2 ln G

1p4G9/21p5G6 ln 2G1p6G6 ln G1p7G6, ~94!

with the constants

p052
1

2
A3, p152

9

8
,

p252
9

8
ln 32

3

2
CE11, p352

27

16
A3,
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p450.2350, p552
81

16
,

p6522.0959, p750.0676.

This expansion completes the result of Ref.@27# for the
small-G expansion of the OCP excess internal energy.

In conclusion, in this paper we have studied the lo
density expansion of the Helmholtz free energy of a class
system of pointlike ions embedded in a neutralizing ba
ground and interacting via Coulomb forces. Such a pur
Coulomb description is appropriate for a large variety
physical systems. To obtain the virial expansion of a cla
cal Coulomb system the Hubbard-Schofield transforma
for the configurational integral in collective variables is use
The original Hamiltonian was mapped onto an Ising-li
Hamiltonian with harmonic and anharmonic contribution
The coefficients of the new effective Hamiltonian are giv
in terms of the structure factors of a reference system. In
case with pointlike ions the corresponding reference sys
is an ideal gas system.

However, it is possible to generalize the present appro
and to consider mixtures of ions with internal structure, i
systems with additional short-range interactions. In this c
the corresponding reference system is a system with part
interacting solely via short-range forces. By introduci
short-range repulsive interactionsuab(r ) ~for example, hard
core repulsions! it is also possible to describe system
of charges with different signs within the prese
approach. In this case the corresponding cluster expan
is built with the integrable bondsgab(r ), gab

2 (r ), and
exp@2buab(r)# exp@2gab(r)#211gab(r)2(1/2)gab

2 (r ) .
Expanding the anharmonic contributions of the effect

Hamiltonian to the configurational integral we have obtain
the cluster expansion of a classical Coulomb gas@Eq. ~35!#.
The exact density expansion of the free energy has b
performed up to the ordern3 @Eq. ~93!#. The virial expansion
of other thermodynamic functions can be obtained from
~93! using thermodynamic identities. Besides its own co
he
-
al
-

ly
f
i-
n
.

.

ur
m

ch
.,
e
es

on

d

en

.
-

ceptual interest, the virial expansion might be useful
studying regimes with sufficiently low density and/or suf
ciently high temperature. However, using virial expansio
for practical calculations one has to take into account tha
virial expansion is an asymptotic expansion of the fre
energy function. The convergence radius of this asympt
expansion is unknown. Therefore it does not make sens
extend the region of the low-density limit to higher densiti
by calculating higher order terms. We conclude theref
that the obtained virial expansion is applicable for practi
calculations only in the low-density region~or in the weak
coupling regime!.

Finally, the present approach can be generalized to qu
tum plasmas. Thus one may employ Morita’s method of
fective potentials to map the quantum plasma system w
bare Coulomb interaction to a classical system interac
via effective potentials. The latter split into a Coulomb pa
and a short-range part. Further, one expresses the Cou
interactions through collective variables and maps the or
nal quantum system via the Hubbard-Schofield transform
tion to a classical reference system with sole short-range
teractions. Alternatively one may also use the Feynman-K
formalism. However, explicit calculations to the ordern3 are
much more complicated as in the classical case.
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APPENDIX A: CALCULATION OF CONSTANT
B3 AND B4,a

Consider the leading contribution to the third cluster in
gral in k space representation
~A1!
SubstitutingxW i5kW i /k one expresses the leading term of t
third cluster integral through the constanta1 with

b35
1

p3 E dx1x1
2

x1
211

I 2~xW1!, ~A2!

where
I ~yW !5E dxW
1

x211

1

~xW1yW !211
. ~A3!

Performing the integration overxW one obtains

I ~yW !5
2p2

y
arctan

y

2
. ~A4!

Now in Eq. ~A2! the integration overxW1 can be carried out
and one obtains@46#
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b352 p2 Fp2

12
2

1

2
ln2

3

4
2Li2S 1

4D G . ~A5!

Using the properties of Euler’s dilogarithm one arrives at E
~53!.

Consider now the constantb4,a defined in Eq.~66!. Using
the Fourier representation of exp@2x#/x we get a similar rep-
resentation as forb3 @Eq. ~A2!#,

b4,a5
2

p2E dx1x1
2

~x1
211!2

I 2~xW1!, ~A6!

with the sameI (yW ) given by Eqs.~A3! and ~A4!. The re-
maining integration in Eq.~A6! leads to the result

b4,a52 p3Fp2

12
2

1

2
ln2

3

4
2Li2S 1

4D1
4

3
ln

3

4G . ~A7!

Further transformations lead to the more compact expres
Eq. ~68!.

APPENDIX B: CALCULATION OF d1S3 AND d2S3

After integration over one volume integral and up to t
ordern3 one represents Eq.~55! in the following manner:

d1S35
Vn3

6 (
a,b,c

cacbccE drW1drW2

1

2
gab

2 ~r 12!

3
1

2
gbc

2 ~r 1! Fac~r 2!1o~n3!. ~B1!

With the dimensionless variablesxW i5krW i one has

d1S35
Vn3

24 (
a,b,c

cacbccl ab
2 l ac

2 l bc
2

3E dxW2S e22x2

2x2
2

2
l ack

3!x2
3

e23x2

1
~ l ack!2

4!x2
4

e24x2 6••• D J~x2!1o~n3!, ~B2!

where

J~x2!5E dxW1

e22x12

x12
2

e22x1

x1
2

, ~B3!

is representable as

J~xW2!5
1

~2p!3 E dkW
~4p!2

k2
arctan2

k

2
e2 ikW•xW2. ~B4!

Within the ordero(n3) we can substitute the contribution
with exp@23x2#/3!x2

3
••• etc. by their smallx2 expansions to

get a convergent expression,
.

on

d1S35
Vn3

24 (
a,b,c

cacbccl ab
2 l ac

2 l bc
2 E dxW2

e22x2

2x2
2

J~x2!

1S 2
l ack

3!x2
3

1
~ l ack!2

4!x2
4

6••• D J~x2→0!1o~n3!.

~B5!

We get withJ(x2→0)5p3/x2 the following expression:

d1S35
pVn3

6 (
a,b,c

cacbccl ab
2 l ac

2 l bc
2

3 lim
e→0

lim
R→`

E
e

kR

dx2

e22x2

2
J~x2!1x2

p3

~ l ack!2

3H expF2
l ack

x2
G211

l ack

x2
2

1

2

~ l ack!2

x2
2 J 1o~n3!.

~B6!

After integration and performing the limiting procedures w
obtain the result Eq.~57!.

Up to the ordern3 one represents Eq.~56! after integra-
tion over one volume integral as follows:

d2S352Vn3 (
a,b,c

cacbccE drW1drW2gab~r 12!
1

2
gbc

2 ~r 1!

3FFac~r 2!2
1

2
gac

2 ~r 2!G1o~n3!. ~B7!

Introducing dimensionless variablesxW i5krW i and performing
the integration overxW1 one obtains

d2S3524p2Vn3 (
a,b,c

cacbccl abl ac
3 l bc

2 E
0

`

dx2x2

3$e2x2@Ei~2x2!1 ln3#2ex2 Ei~23x2!%

3H 21

6

e23x2

x2
3

1
l ack

24

e24x2

x2
4

6•••J 1o~n3!.

~B8!

The higher order terms containing exp@24x2#/x2
4 . . . can be

substituted by their smallx2 expansion to cut the singularit
at smallx2. One gets

d2S3524p2Vn3 (
a,b,c

cacbccl abl ac
3 l bc

2 E
0

`

dx2x2

3$e2x2 @Ei~2x2!1 ln 3#2ex2 Ei~23x2!%

3
21

6

e23x2

x2
3

22x2
2 S l ack

4!

1

x2
4

2
~ l ack!2

5!

1

x2
5

6••• D
3~CE211 ln 3x2!1o~n3!. ~B9!

Summing up the singular atx250 contributions a finite ex-
pression is obtained,
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d2S3524p2Vn3 (
a,b,c

cacbccl abl ac
3 l bc

2 E
0

`

dx2x2

3$e2x2 @Ei~2x2!1 ln 3#2ex2 Ei~23x2!%

3
21

6

e23x2

x2
3

2
2x2

2

~ l ack!3
~CE211 ln 3x2!

3FexpF2
l ack

x2
G211

l ack

x2
2

~ l ack!2

2x2
2

1
~ l ack!3

6x2
3 G

1o~n3!. ~B10!

The remaining convergent integral can be calculated by
troducing an upper and lower bound and then by perform
the limiting procedure tò and 0, respectively. After som
lengthy calculations one arrives at Eq.~59!.

APPENDIX C: CALCULATION OF d1S4

The first diagram in Eq.~70! represents a divergent con
tribution. Consider therefore the convergent correction to
leading contribution of the first diagram in Eq.~63!,

~C1!

Within the ordero(n3) one obtains

d1S45
n4

4 (
a,b,c,d

cacbcccdE drWadrWbdrWcdrWd

32 FFab~r ab!2
1

2
gab

2 ~r ab!Ggac~r ac! gbd~r bd!

3
1

2
gcd

2 ~r cd!1o~n3! ~C2!
-
g

e

or

d1S452
Vn4

4k4
b7 (

a,b,c,d
cacbcccdea

4eb
4ec

3ed
3E dxW

e23x

6x3
J4~x!

2S l abk

4!x4
1

~ l ack!2

5!x5
6••• D J4~x→0!1o~n3!, ~C3!

where

J4~x1!5E dxW2dxW3

e22x23

x23
2

e2x2

x2

e2x13

x13
~C4!

is representable as

J4~xW !5
1

~2p!3 E dkW
~4p!2

~k211!2

4p

k
arctan

k

2
e2 ikW•xW.

~C5!

Taking into account thatJ4(0)58p2/3 we get the conver-
gent expression

d1S452
pVn4

k2
b7 (

a,b,c,d
cacbcccdea

4eb
4ec

3ed
3

3 lim
e→0

lim
R→`

E
e

kR

dx
e23x

6x
J4~x!2x2

8p2

3~ l abk!3

3H expF2
l abk

x G211
l abk

x
2

1

2

~ l abk!2

x2

1
1

6

~ l abk!3

x3 J 1o~n3!. ~C6!

After integration and performing the limiting procedures o
gets the logarithmic contribution of Eq.~71! and the constan
c4a @Eq. ~72!#.
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