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Equation of states for classical Coulomb systems: Use of the Hubbard-Schofield approach
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An effective method based on the Hubbard-Schofield apprf@leiss. Lett. A40, 245(1972)] is developed
to calculate the free energy of classical Coulomb systems. This method significantly simplifies the derivation
of the cluster expansion. A diagrammatic representation of the cluster integrals is proposed. Simple rules
providing the leading order in density of each diagrammatic contribution are found. We calculaterthe
contribution and recover the results at the ord&f obtained by the traditional method of resummation of
diverging Mayer bondd.51063-651X99)13905-9
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I. INTRODUCTION ter integral in a systematic manner.
Using the formal representation of the configurational in-

This paper is adressed to the study of the virial expansiotegral in terms of the collective variables Zubaf&\} and
of the Helmholtz free energghereafter the free energfora  Juchnowskij 8] gave a cluster expansion of the free energy.
classical Coulomb system. We consider a multicomponenthe transformation from the individudl.e., the position of
system of pointlike ions embedded in a neutralizing backthe particley to the collective coordinate@.e., the Fourier
ground. Because of the long-range Coulombic nature of th&ransforms of the density fluctuations performed via the
interaction potential between two charges the correspondingorresponding Jacobian. Within the random phase approxi-
virial expansion Mayer grapH] diverge. In the traditional mation for the Jacobian one arrives at the Debyekelap-
method these long-range divergencies are removed via th@oximation for the free energy’], and a systematic expan-
chain resummations introduced by May&] and Salpeter sion of the Jacobian leads to the cluster expansion of the free
[3] and further developed by the works of MeergH] and  energy[8,9]. However, this method is still cumbersome.
Abe [5]. To avoid complicated calculations related to the By use of integral transformations the method of collec-
chain resummation we present in this paper an alternativéve variables has become technically more feasible. Here,
method of calculation of classical Coulomb system thermoinstead of a Jacobian transformation an identity is used
dynamic functions. which expresses the Coulomb interaction in terms of external

We show in this paper that the earlier results can be obinteractiong10-13. As for Coulomb systems this exact ver-
tained much more easily using the method of collective varision of the mean field idea of Debye andd#el leads to the
ables and integral transformations. Moreover, this methodine-Gordon(SG) representation of the configurational inte-
makes it possible to obtain the free energy of a classicajral [12—14. By virtue of a rigorous mathematical proof it
plasma system in a systematic manner up to an arbitrarwas shown that the SG transformation produces a cluster
order (at least in principlg In addition, this method is ca- expansion of a system with long-range interactigts. Fur-
pable of describing not only the low-density limiting thermo- ther, the SG theory of Coulomb gas was used to analyze the
dynamic behavior of a Coulomb system but also the regiommetal-insulator transitior{16,17] and Coulomb criticality
of critical density of Coulomb fluids and that of a strongly [18]. Such a method of analysis of the Coulomb criticality
coupled plasma. However, in this paper we will restrict ourwas claimed to be the most promisifi]. However, the SG
considerations to the low-density region of a classical iorrepresentation in the pure Coulomb version is applicable
mixture. only for lattice modelqgwith possibly vanishing lattice con-

The method of collective variables is a powerful tool of stan} and for pointlike charges.
investigation of both classical and quantum Coulomb sys- A hybrid method combining the advantages of the
tems. There were two basic lines in this method mainly deZubarev-Juchnowskij approach with that of Stratonovich,
veloped already in the 1950s. The first line starts with theHubbard, and Kac was developed in R&0]. Here the par-
initial plasma Hamiltonian, being the sum of the charges'ticle interactions are divided into long- and short-range inter-
kinetic energy and the interaction potential between thenactions. Thus short-range repulsive interactions such as, e.g.,
and converts it into the collective variable Hamiltonian usinghard core repulsions, are introduced in a natural way. Using
the canonical transformation®]. The second ling7,8] the Stratonovich-Hubbard-Kac transformation the original
starts from the configurational integral of individual par- system with both types of interactions is mapped onto a ref-
ticles. Certain transformations lead then to the configuraerence system with short-range interactions only. In contrast
tional integral expressed through collective variables. to the SG theory the Hubbard-SchofigldS) approach is

Using the first approach the physical processes can beapable of performing off-lattice calculations. Further, in the
interpreted in terms of the collective variables. Thus theHS approach the cumulant expansion is used to map the
plasma oscillations are represented as oscillations of the deftamiltonian of the original systerfa nonionic or ionic fluigl
sity fluctuations’ Fourier components. Following the secondonto an effective magneticlike Hamiltonian. Since the mag-
general line it is possible to obtain an expansion of the clusnetic system Hamiltonian can be recast into the Landau-
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Ginzburg-Wilson form[23] such a representation is very contributions to the effective Hamiltonian one directly ob-
convenient for the analysis of both ordinary flui®d] and tains the cluster expansion of the configurational integral and
charged hard sphere system criticali2]. To our knowl-  of the free energy of a classical plasma without bond resum-
edge the HS approach was first applied to a one-componeftation(Sec. I). Instead the bare Coulomb interaction is au-
plasma in Ref[24]. tomatically screened in the HS approach. Ultimately, the in-
Despite the significant success of the method of collectivdegrals that determine the virial coefficients in the HS
coordinates in describing Coulomb systems the low-densityethod are the same as those which appear in the more tra-
limit of Coulomb systems was mainly studied by traditional ditional AbeMeeron-Friedmann approach. In this sense the
methods of statistical physig&5]. Starting with the charging 1S method may be considered as another evidence of the
formula for the free energy an expansion in terms of ordinanfact that all virial coefficients are expressible in terms of
Mayer functions can be found. However, in the case of CouMayer-like graphs built with screened bonds. Arriving at the
lomb systems the Mayer functions diverge. Expanding th&/iral equation of state it will be shown that the method of
Mayer function in powers of the Coulomb potential one cancollective variables in the Hubbard-Schofield representation

collect the Mayer series into special subseries and perform i§ capable of describing not only the critical behavior but
partial summation of Mayer bonds. The resummed Mayef'SC the low-density limit of Coulomb systems.
bond is representable through the screened Coulomb poten-

Additionally, there are some basic ideas in the literature
tial and is integrable. Thus the sum of all ring diagrams give" how to generalize the method of collective variables to
the Debye-Huakel approximation for the free energy. Pic

k- the case of a strongly coupled plasma. We mention here the
ing up in all diagrams the chain of Mayer bonds leading to

calculation of “first-principles” expressions for the free en-
the screened potential and ordering all diagrams by the nunf’dY_Over the entire density region of classical plasmas
ber of vortices the cluster expansion for the free energy is33:24- In this approach the static structure factor in the
obtained. The virial expansion up to the oraéf (n being  Debye-Hiekel form is employed; strong coupling effects are
the number density of iofisvas found within this method

involved by introducing an upper bound for the collective
[5,26,27,25 However, to perform this procedure a number Variable wave vector, as was done by Debye in the theory of

of very refined diagrammatic transformations are requiredPECIfic heats of solids. ,
[25]. Various first-principles formalisms based on the chain Further approaches are devoted to the study of dynamic

resummation of Mayer bonds have been used to generaliZJOPerties of coupled Coulomb systems using the represen-
the virial expansion of classical Coulomb systems to the casktion of fche plasma Hamlltonlan into collective varlaples. In
of quantum plasmas. First, the method of effective potential? rather incomplete list we mention the approaches in Refs.
introduced by Morita[28] for quantum systems has been [34:39 based on the Mori-Zwanzig theoi36,37 (or the
applied by Ebeling to the Coulomb caf29]. A renewed MeMOry function formalism the approaches based on the
interest in the exact calculation of thermodynamic functiondn€0ry of momentg38], and the approach based on the
for weakly coupled quantum plasmas beyond the Debyeduasilocalized charge approximatigse].

Hiickel limiting law has been observed recently. The virial 1€ Present paper is organized as follows. In Sec. Il, we
expansion for the free energy up to the oradf in the  @PP!Y the approach of Hubbard and Schoff@d] to map the
density was derived using the Feynman-Kac formalis6 original Hamiltonian of the classical Coulomb system onto a
and the method of Green’s functiof1], respectively. The magneticlike Hamiltonian. The coefficients of the magnetic
latter method involves an additional expansion with respecfi@miltonian obtained are expressed via the ideal gas struc-
to the square of charge?. Confirming and completing the ture factors, and are calculated exactly. Expanding the anhar-

earlier results by Hagg26], Friedmar{25], DeWitt[32], and monic contributions of the magnetic Hamiltonian we obtain
Ebeling [29], both approaches arrived at the same result'.[he cluster expansion .Of a classical plasma. .
The cluster expansion is the starting point for the density

Therefore the virial equation of state for both classical and ) . .
pansion of the classical Coulomb system. Explicit calcula-

uantum Coulomb systems is now generally accepted a , ; .
d 5/2y g y P tions are carried out up to the ordet in Sec. Ill. Compari-

known up to orden><. . Its i ied briefl
In this paper we show that the density expansion of &°" to previous results Is carried out briefly.

classical Coulomb system can be obtained much more easily
using the method of collective coordinates. Like Zubarev and Il. CONFIGURATIONAL INTEGRAL

Juchnowskij we rewrite the partition function in terms of the

collective variables. In contrast to them we will not use the Consider a classical plasma consistingvbkorts of ions
Jacobian transforming the space coordinates of individualith N, ions of a given species with massesm, and
particles into the collective variables. Instead, we represerthargese,. In what follows we will omit the summation
the configurational integral of the Coulomb system throughbounds in the summation over the particle typged the

the configurational integral of a noninteracting system in exsummation is carried out from 1 #d. The total number of
ternal fields. Further, following the line of Hubbard and particles isN=X_,N,. The system of ions is immersed into a
Schofield we employ the cumulant expansion. This enableseutralizing background. The plasma system with total vol-
us to rewrite the configurational integral in a similar way asumeV and temperature in energy units=1/3 is described
the partition function for the magnetic system having anby the interaction potential

Ising-like Hamiltonian. The coefficients of the effective

magneticlike Hamiltonian are expressible in terms of the

ideal gas correlation functions and are perfectly known. Per- U(Tys .o )=
forming a perturbation expansion in terms of the anharmonic

=z
z

b

2 2 vap(ri ). 1)
ab i=1j=1

a

N| =
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As far as we consider pointlike ions the interaction potential 1 "
between two particles is given by the Coulomb potential ZCZEXF{E > a(k)> 11 [[ZWQ(k)]_ f d@E]

<ei% 9124042>_

(10

€a€p

Uab(ri lrJ)

1
== 2 Xexr{—§<2 a(k) " tope_k
ri—rjl
Introducing now the collective variables of the plasma sys-

tem, the Fourier transforms of the charge density, Note that the field variabley (as well asgy) is a complex
number,p= @t @is With real ¢ and ¢gs. Therefore in

Ng+ N
_ < s Eg. (10) the product of integrals has to be understood in the
_ 12 k-r; .
ek=(v) g €a i:ENa e, 3 following manner:
— 2 _ -1 o o0
wherev=2X,e;N,, and/\/?—EE:le. _ f fd(PIZd(P—IZ:f deidei  and
The interaction potential can be expressed in terms of the o)
collective variables, 2 9
Pk@—k= | ekel*+ | oidl * (11
1
BU= > E a(k)[ege_¢—1], (4)  Inwhat follows we will use the shorter notations of E#j0).
k#0 Regard the functional
with the notation a(k)=«%k?> and «’=[(4m)/
(VT)]2.e2N, being the square of the inverse Debye radius. V[e]= < exp{iz Qﬁ@ﬁ] > : (12
The contribution withk=0 cancels due to the presence of k

the background. h e th f f an ideal
Our aim now is to calculate the free energy of the plasmér € moments oby (i.e., t e structure factors of an idea yas
system, can be obtained by functional differentiation

e © Ik, Pk, I

HereZ, is the ideal part of the partition integral, whereas the sle=0
configurational integral is given by (13
1 Consider further the functional
Z‘::_NJ dFl...dFNe*ﬁU(fl ----- N (6)
v Ole]=In¥[e]. (14

The configurational integral is expressed now through the&'he Taylor expansion o® defines the cumulants @f [40],
collective variable$7,8]

1 1 Ol¢]= — Up(kqy, ko, ... K
Zc=exp(§_2 a(k)><e><p<—§2 a(k>egeg)>, AR TR, ke g
k#0 k#0
(7 XQ K@k, Pk, (15
wh(_ere the angular brackets denote averaging with respect {®.. the cumulants of ordes can be obtained by the func-
an ideal gas system, i.e., tional derivative
1 - - S,
V s\R1, R, » Rs P -5 g R
P -k, 9P -k, P—kg| _
¢=0
Using the identity (16)
5 The first four cumulants read
1 _up [ 1
exp — za%’| =(2ma%) exp — 5 i o
o a ui(k)=(egy=0, k#0 (17)
Xexp — ixy)dy 9)

Uz(Ky, ko) =(@k,0k,), Ki#0,k#0
one expresses the configurational integral of the interacting
system through the configurational integral of a system of s> s L
noninteracting particles moving in an external figld [20], u3(k1'k2’k3):<9'219'229'23>’ ki #0,
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Us(ky, Kz, K3, Ke) = (0 0k, 0k, 0k,) — (K, 0k, ){ Ok, OK,)
(0K, 0k Ok, 0k,
—(Qk, 0k MOk, 0k,),

k;#0, ... k,#0.

In general one
s Ug(kq Ko, ...

expresses

factors of order less thas
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the cumulants of order

,IZn) through the ideal gas structure factor of
orders (leggz- . -Q@ minus all combinations of structure
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where the prime on the summation sign indicates the trunca-
tion, i.e., the wave vectorﬁ are chosen in such a way that
all the sums of less thamwave vectors must not be equal to
Zero.

Substituting Eg. (22) into Eg. (100 we obtain the
Hubbard-Schofield representation of the configurational inte-
gral for the classical ion mixturg20]

zc=ex;{%2 a(k))H {[2wa<k>]1’2fd<pg]e“wl,

k

Calculate now the ideal gas structure factor of orderWIth the effective Hamiltonian

n (k,#0, ... k,#0) [41].

1 - -
.- -\ _—,,—n2_"_ .
<leQk2 ka> 4 YN dry---dry
X D ey e,
ag, ... an 17 n
Na1+Na1 Nan+Nan
xS
ilzNa1+1 inzNan+1

xexp;[i(lzlfil+ e +IZnFin)}.
(18

In the thermodynamic limifi.e., neglecting terms of the or-
der 1N) we obtain

(0k 0k, - 0i)=N"""22¢c &5 ¢ o0, (19
with 8,5 being the Kronecker delta, and
Cn=(N/V)(n_2)/2v_1§ e'N,. (20)
For the cumulants we then have
Un(Ky, Kz, « .. Ky)=N~(""22¢ O+ +K, 0
gg ki#0, Gc{1,2,...n}. (21)

The conditions in Eq(21) reflect the facts that the sum of all
n wave vectors being the argument wf(Kky, K, .. .,K,)

equals zero, whereas all the sums of wave vectors containing

less tham wave vectorsﬁi must not be equal to zero.
Inserting Eq.(21) into Eq. (15), and using the definition
of the functional® [Eq. (14)] and¥ [Eq. (12)], we obtain

N- (=202
..... Kn

X O+ +K .0 Pk, P—ky " Pk, |+

n

(22

(23
Alel=X 2 walki ko, oo ko)
=1 Ky, ... Ky
XQ K@k, Pk (24)
and
w,=0,
1 k2
Wo=3 Ok, +k,, 0 K2+1 :
ey
Wa= 2 N2 Ok +Ky+Ky, 01 (25
3 i"cy o )
WI"I_ - n! N(nfz)/z 5k1+k2+---+kn,0'
We rewrite the configurational integral in the form
exd a(k)/2]
ze=Il {—F—= | dex
K V2ma(k)
1 o
X exp{ - z[a’l(k)Jr 1ere_k } e Zn=3"n
(26)
where theHH,, are defined by
i"cy )
anmﬁl > : Ok, +Ky+ -+, 0
""" n
X<p*|21<p*|22"'¢7k11 (27)

with c, from Eq.(20). The H, contain the anharmonic con-
tributions of the auxiliary field variablesy into the configu-
rational integral. Neglecting the anharmonic contributions
one arrives at the Debye-ldkel approximation for the free
energy first derived within the framework of collective vari-
ables by Zubarey7] (see the next sectipnNotice that the
presence of the Debye potential in the covariance of the
Gaussian measure over tigg's is the reason for the auto-
matic screening within the present approach.
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In what follows in order to obtain the cluster expansion
within the HS approach we have to perform manipulations H

|

analogous to those in the Zubarev-Juchnowskij approach. k | VZ2ma(k)
Expanding the exponential ekp>,_;H,} one represents 313 i3
the configurational integral as x? 503N71/23' cN-12 >

exd a(k)/2]

Z:
=1l V2ma(k)

1
dwexp[—z[a-l(m
k

|

+1leie i

]{1+c;+cg+cg+cg+--~}, (28)

where the abbreviations

Ci:H3+H4+H5+' c

1
Cézg{[H3H3+H4H4+ co]

+2[HgHa+ HaHs+ - - - +HaHs+--- 1}, (29)

1
Cé=§{[H3H3H3+ HaHaHy+ -]

+3[HsHsHs+ HaHHst - - - + HyH Hs+ - - -]
+6[H3H4H5+H3H4H6. . ]}

are introduced. Equatio(28) is an infinite sum of products
of integrals of the type

1
J d@ﬁexl{— E[a_l(k)Jrl]cpwfﬁ Lol [o—g]™
(30

The result of the integration over;;, differs from zero only if
n=m in Eq. (30). Having this in mind and taking into ac-
count that in?,, the sum over th&’s is truncated, one finds
that all linear powers oH,, (i.e.,C;) and also a lot of prod-
ucts ofH, in the higher orde€;, (m > 1) vanish under the
integration overpi. In general we have to choose products
of

Wnl(lzll’ e rklnl) Tt WnS(EsliksnS)' o
><<P4211€07|212"'<P7E1n1"' Q-
(31)

[see Eqs(24) and(25)] such that one can pair aﬂgij with
other<pgIm wherebyi #1.

X (@k, Pk, Pk,) (@ -k, Pk, P—ky) Ok +Ky+K5,0

3 exd a(k)/2] | (—1)3 10
_l—lz[ { Va(k)+1 ] 2x3! 3@%,%

o Ok, +K,+Kg,0
[a (k) +1][a (ko) + ][ H(kg) +1]

(32)

It was taken into account here that one has 3! possibilities to
pair the field variablegy in the producti; Hz. Notice also
that in the right hand side of Eq32) the truncation in the

sum overk, ,k,,ks is omitted. Performing in Eq(28) the
integration over the field variables; one arrives at the fol-
lowing formula for the configurational integral:

|

where theC,, (without prime denote the sum of all products
of n functions H; (i=3,4,...) after integration over the
field variables. Having in mind the above rules for the pair-
ing of field variables under the integration sign one finds that
all the contributions int@’, vanish, the second clustép is
composed of the termsH(,/,), n=3 only, whereas in the
third cluster C; only the combinations %, H,H,)(3<n
<=ms=I) with n+m>| andn+m-+1 being an even number
remain. We obtain the following structure for the first three
clusters:

exd a(k)/2]

ze=11 Ja(k) +1

}{1+Cl+CQ+C3+C4+ c '},
k

(33

01

Gy

1
0225{[(7‘[37‘[3)4' (HaHy)+ -1} (34

1
Caza{[(”‘u HaHa)+(HeHeHe) +- - - ]

+3 [(Ha Ha Ha)+ (Ha Hy He)+ - - -
+(Ha Hs Hg) + - - - 1+ 6[ (HzH4Hs)
+(HsHsHg) - - .]}_

Here ( ) means that the integration over the field variaples
was performed.

Following Juchnowskij and Golovk{®] we introduce a
diagrammatic representation of the expressions appearing in
the cluster€,,. The diagrams consist of lines and points. The

Consider as an example the pairing of field variables inconnection of lines and points is called a vortic. An unpaired

the lowest nonvanishing product (1/2); H5 contributing to
C5. In this case the integrand is

'H,, contribution occurring in the clustet, can be symbol-
ized by a vortic withn open lines
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1
2 2 B exd a(k)/2] N
P Z. 1'k[ [ NS exp(S,+ S5+ S, 1. (35
whereas a pairet,, H, contributing to the clusters§,, can
be represented by the following diagram: The clusterS, can be expressed by the same diagrams as
the clusterC, with the following additional condition.
1 (4) From all the diagrams contributing 8, we have to
@ ] choose only irreducible diagrams, i.e., those which do not
n represent a combination of lower order diagrafiihe latter

] ] ) ] ] arise in Eq(33) by expanding the exponent in E@5)]. For
Comparing the diagrammatic representation with the andgyample, the diagram

lytic expression from Eq(32) one can establish the follow-
ing rules for the diagrams.
(1) Outgoing lines are associated with a wave vetEﬁor ® @
incoming with — IZi .
(2) A vortic with outgoing lines
) contributes taC, but does not contribute t8,.

2 The first cluster integral§,, will be considered in the next
section.

n

represents the factor
lll. VIRIAL EXPANSION

i"c, i Our aim now is to obtain the virial expansion for the free
N("—2)72 5k1+k2+-~-+kn,0- energy of the ion mixture. The basic expression that is used
as a starting point is the cluster expansion for the interaction

(3) n lines connecting two points replace the notations partF, of the Helmholtz free energy per volunein units

of T=1/B,
1 1
N oYk +1][@ YKo +1] -- - [a Mk +1] F 17
[a (k) +1][a “(k)+1]--- [a “(ky)+1] %:_ fDH+VESnr 36
n=2
(4) One has to count the number of topological identical
diagrams which differ only by the numeration of the points.
(In what follows this number will be shown explicitly. where
(5) Summation over the wave vectors has to be per-
formed.
With the thus defined diagrams one easily expresses the 1 3
clustersC, . From Eq.(34) and calculations analogous to that fou=— v > {ak)—In[a(k)+1]}= 1om (37)
aT

in Eq. (32 one finds that the clustet, is given by the sum K
of all possible diagrams satisfying the following conditions.

(1) The diagrams consist of points and closed lines. ) ) ) o

(2) The minimal number of outgoing and incoming lines iS the leading Debye-Hikel contribution to the free energy
in each point of a corresponding diagram equals 3. . . ) ) ] )

(3) Self-truncation is forbidden, i.e., closed loops are ab- In the following part of this section we will consider the
sent, each line connects two different points of a diagram. Idirst cluster integrals and extract the leading terms of the
addition a connected diagram or a connected subdiagram ofd€nsity expansion within each cluster integral.
disconnected diagram should have the following property.

By cutting an arbitrary number of connections of a certain _

(but arbitrary point with other points but keeping at least A. Second cluster integral

one connection one remains with a connected diagi@m The second cluster integral is given by the sums of dia-
subdiagram still. [This rule represents the prime in Eq. grams

(27).] For example, due to this rule the following diagrams

should be excluded: 1
82:5( e + <> + ...),

AT

Since our final aim is the calculation of the free energy we
rewrite Eg.(33) in a more convenient form, or in analytic representation
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1 & (=1)% dkydk, - - - dk, Oyt -y 0
SZ:E 2 n-2 f 230 2, 2 2, 2 2, 2 ' (39)
n=3 nIN (2m) [k2/k®+ 1] [K3/k?+1] ... [K3/K?+1]
|
Substituting thec,, values from Eq(20), and using the con- In order to get the density expansion of the second cluster
volution theorem and the expression for the inverse Fourieintegral we expand the corresponding expression in(&£%.
transformation of in powers ofk. Up to the orden® we get
dk 4wy - lab NN, (= 1(1gp)°
—— e T=g(N=—e""", | p=e46, = a bJ o[ | _Z[130) (o-3kr_
f 2m) Kt 2 Gab ; ab=€a€p/ S, 27Ta2,b v, drr sl (e 1)

(40)
. e . . Iab N —4kr
we find the familiar expression for the second cluster integral ~ +fap(r) | +| 77| =] (€7 —1+4kr)+laprfap(r)
NaNp < (=D [ . 1 (1|8 25
NN, f . 1, 3
_ _z 1 1 1/1
2 v ) 9Pl z0a0) @Y 5 (k)2 a1~ 5 | a0+ 2| 22 |1,
2 2 6\ r
where the generalized Mayer function (45)
O, p=e 90 —1+g.,(r) (42)  Wwhere the truncated bond
is introduced. ab lap /1452
Thus performing the inverse Fourier transform one can fap(r)=exg — =] —1+-——5{—— (46)
establish the following rules of evaluation of a cluster expan-
sion graph in the coordinate representation: has been introduced.

(1) Each point is associated with a particle of spe@es  gimilar calculations of the second cluster integral at the
and provides an integration over the coordinate spacgrder n® for a quantum plasma have been performed by
nc,fdr,, the total particle densithy=N/V, and the par- Kahlbaum[42] and Ortnef43].

ticle concentration of species c,=N,/N, are introduced A straightforward calculation of the integrals in E¢5)
here. leads to the result
(2) | solid lines connecting the poingsandb give a factor
[(—=1)'/11][Qap(Fap)]" Wherer = |Fa—rp|. L[
(3) Introducing a graphic representation of the generalized S,=V{n?>, CaCplap Eln Kl aptas
Mayer function, ab
— o
a > - + =+, +n2;<a§:,) CaColab 3N wlap+b;
(43
: 2.2 5|27
one associates a bond +N°k ;, CaChlap ﬂln klaptColt, 47
- with the numerical constants
connecting the pointa and b with the Mayer function - 11
D p(rap) =X — Gan(ran)1— 1+ Gan(ran)- a=3 2Ce— €+In3 =0.4395B...,
(4) Finally, summation over the particle types has to be
performed.
Given these rules one represents the second cluster inte- o 17 B
gral in the following manner: b2_§ 2Ce- €+In4 =—-0.3064.. ., (48)
1
Sy = - e=——e ). 5 203
3( D cz=§[2CE—E+In5 =—0.4054,

(44)
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Ce being the Euler-Mascheroni constant,Cg B. Third cluster integral
=0.5772156... .

Thus we recover the result of A4é&] (i.e., the density
expansion of the free energy up to the oraé) and have
written down all terms of the order® andn?®In n stemming
from the second cluster integral.

A A A D]

With the graphic representation of the generalized MayeEspecially, it is not correct when bond$8(r) of one argu-
function we represent the third cluster integral in the com-mentr with p=3 are present. These bonds are nonintegrable
pact mannef8,25,44 due to the singularity at short distancesHowever, these
short-range divergencies are spurious. They are just an arti-
fact of the expansion of Boltzmann factors in the Mayer-like
graphs in powers of the screened or unscreened Coulomb
potential. Since all Boltzmann factors are integrable at short
distances it is always possible to eliminate these unphysical
divergencies at any order by a suitable collection of the di-
(50) vergent contributiong45]. For example, thegP(r) bonds
(p=3) may be resummed into the bord—g?/2. At low
Using the diagrammatic rules one easily writes down thedensities, this bond can be replaced by the bare truncated
explicit expression for the third cluster integral bondf(r) [see Eq.46)]. This is an integrable bond except
for the logarithmic divergency at large distances. The latter
divergency can be finally removed using the bond

Following the general rules of construction of the cluster
integrals of arbitrary order one expresses the third cluster
integral through the following sum of diagrarf@):

3
S3Zn_ 2 CaCbCCf dFadedFC
a,b,c l(lab 3 o
[_3gab(rab)q)ac(rac)q)bc(rbc) 6\r (e 1)+fab(r)’
TP ap(rap) Pac(rac) Poc(Mbe)I- (5D which leads to the appearance of the logarithmic terr In
. . . _ This is just the content of the renormalization procedure em-
However, we are interested in the density expansion ofoveq in Eq.(45). It will be used in the remainder of this
the free energy. The third cluster integral, like all clustergeciion Nevertheless, the above estimation of the order of a
integrals, is a function of density. We formulate now some ) ster integral is correct as far as the leading contributions
general rules of picking out the leading terms of a densityy¢ ha mth (m=3) cluster integral are looked for. These
expansion of a ce_rtain.clusFer integral..A graph madenof contributions are obtained with bondgand g2 only for
points andl solid lines(i.e., it is a contribution to thenth  \ hich the scaling analysis is applicable. One also proves that
cluster integral is proportional ton™fdr;---dry,g'. Here  the minimal numbet,;(m) of solid lines of a graph contrib-
the occurrence of a product ¢fDebye functionsg with  yting to themth cluster integral is th—[m/2] with [\] be-
differe[]t arguments is sketched Only SChematica”y. SUbStlmg the integer number of. Therefore the |eading contribu-
tuting X;= xr; one finds that the above graph gives a densitytion of the mth cluster integral is of the order of
contribution to the free-energy densitwith the additional
factor 1V, see Eq(36)] of the order }( 3+m—[T )
2 2|)
The leading contribution from the third cluster integral is the
It should be mentioned that this simple estimate is valid onlygraph with five solid linedstemming from theH; H; H,
as far as the remaining dimensionless integral is convergenterm, see Eq(34)],

nmK:’>/2K73mKI ~ n3/2+|/27 m/2‘

3 1 1
3 A = - %cgzccacbcc /dFadech gab(rab)§ [gac(rac) ]2 5 [ybc(rbc) ]2 3

L] -
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and gives a contribution to the orde?’? [26], and expand the corresponding contributions in terms.of
v First, consider the term;S;. As is shown in Appendix B
n we get, up to the orden?,
Sl?»: - bBT aEbc CaCchl ablgclﬁv (52 9 P

4

_ 3 2,22 ™

The numerical constartt; (an integral representation was 0185=—Vn a%c CaCoCel av! aclbc[ﬁln Klact Ca
already given by Hagp26]) is calculated in Appendix A. It (57)
is expressible through the Euler dilogarithm ,(x)
=37 x¥k2|x|<1 and equals, in accordance w[#2],

where the constant

7T2-l—L'
127

1 —
-3 =10.1347.... (53 8a™ 12

, vsdk k 3
lim 167 f —arctaft = + 274 In 6+ Cg— =
550 o k 2 2

b3:2’ﬂ'2
Following the general scheme tmé terms should be ob- =—28945... (58)

tained from all graphs with six solid lines, i.e., from the has been introduced. Consider now the teisi;. Up to the

diagrams ordern?® we get(see Appendix B
3 32 2m* 2
and , (54) 8,83=Vn Eb CaCoCelanlael b 5~ IN 2l ac
a,n,c
. 8?2 17 1
representing thé{, H, H, andH3 H, Hs terms. +——| Ce—=5+5In3|Inklae+cap|, (59
However, the corresponding integrals are divergent. The 3 122
divergencies occur at short distances and are connected Wi\W\th
a singular accumulation aj? bonds or with the occurrence
of a bondg®. These short-range divergencies are unphysical 272 11
and can be removed by a renormalization procedure as dis- €36~ 3| 2[Ce~1+In3] |Ce— = +In3

cussed above. Regard therefore the two corrections to the

leading contributionS}, ?

T 121 )
+In3[8In2-31In3]-8In?2— —+ —+2C¢

. 3 18
n s e
518323 Zb Cacbccf dradrpdre 17 . 1 ) 2
abe — 5 Ce—4Liy| — 7| —2Lis — 3
X(I)ab(rab)q)ac(rac)q)bc(rbc) (55)
=8.85348. ... (60)
and
Notice that the leading term af,S; is of the ordem®In2n.
nd I
0283=— 2 4. CaCchf dradrpdre gap(ran) C. Fourth cluster integral

The diagrammatic representation of the fourth cluster in-
tegral is found from the above diagrammatic rules and reads,

X . ;
2 in accordance with9],

1 2
®ac(rac)_§gac(rac) q)bc(rbc) (56)

+ ...

. +12[0:j0 +]
+12[@ + ] +12[ + } + 3 @ + }
[+ ]+ |+ |} -

The dots beyond a diagram of a given type represent all diagrams constructed from the basic one by adding an arbitrary
number of solid lines between points connected by two l(ii@sthe case of outer ling®r by one line(for the case of inner
lines). Introducing a generalized Mayer bond of second type,

—+

W an(ran) =X —Gan(ran) 1 — 1,
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+ ... = (62

one writes the fourth cluster integral in the following manf2%,44,9:

The leading contribution from the fourth cluster integral

are the two graphs with six solid lindstemming from the
Hz Ha HaHs term),

Sy = & (64)

(63

48, =

+ 12 @
i‘ + o(n3)} 70

Again the first diagram in the above equation is divergent

According to the rules formulated in Sec. Ill B they are of and we may apply the renormalization procedure as de-

the order om®? and give[26,25

4
3,3,3

n
I _ 6 3
Sy=b,—B > caCpCecqeieieled, (65
K a,b,c,d

with the numerical constarit,=b,,+ bz,

(66)

e—xl) 2 e_xlz( e—x23) 2 e X3

1
b4’a:1_6f XmdXZdX3 X3

X12 \ Xz3

e X1 g X2 @7 X3 g7 X12 @~ X13 @~ X23

1
b4,B= ﬁj XmdXZdX3

X1 X2 Xz Xz X1z Xoz
(67)
The constanb, , is calculated in Appendix A. It equals
ba, =27 T+ L +2n3|—s052a
4a_7TE Iy § 5”2—.

(68)

The constanth, ; was evaluated numerically by a Monte
Carlo calculation and equals, in close correspondence with

[30],

by 5= 1.785+0.001. (69)

Consider now all diagrams with seven solid lines represent-

ing the H3 Hs H4H4 andH3 Hs HaHs terms and contribut-
ing to the ordem?.

scribed in Sec. Ill B. The details are given in Appendix C.
We obtain

4

n
584:_2:87 E CaCpCcCy
K a,b,c,d

473
Tln Klap—Cs

X : elefelel —elelele’ C4E] :

(71
where the constant,=c4,+Csg+Cs,+Css and c,. has
been introduced,

4773{17 } 1677703 dk
C = — — —
o e Tl 3 Jo(k2+1)?

. (72

k k k )
xarctani 3 arctar)3—+ Eln(k +9)

—X1

1
C4'B:§f XmdXZdX3( X

2a7X @7X3 @7 X12 @7 X13 @7 %23

Xo X3 Xip X1z Xoz |
(73
1 e X1 2 e X3 2 e X12 2e—x23
C‘W_l_EJ dx,dx,dx5 v X X0 Yo7
(74)

1
C4’5:§f XmdXZdXS X X3

X12

! ( e_x3) 2 ( e_xlz) 2 e X3 @ X13
1

X13
(79

X23
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1 e X1\2 /a7 X3\2g X2 g X3 @7 X2 The fifth and sixth cluster integral contributing to the order
c4,€=§f dx,dx,dx n® are considered in the next section.

X3 X12 Xzz Xp

(76) D. Fifth and sixth cluster integrals (leading terms)

The diagrammatic representation of the fifth and sixth
The above multiple integrals far, 5, €45, andc,, can be  cluster integrals is given by a huge number of basic dia-
reduced to single or double integrals and are evaluated byrams. Thus the fifth cluster integral is represented in Ref.
numerical integration. The remaining integral is estimated by9]. According to our aim of presenting a virial expansion of
a Monte Carlo run. As a result we obtain the free energy it suffices to give the leading contributions to
both cluster integrals.
The leading contribution of the fifth cluster integral is
given by the four graphs with eight solid ling¢stemming
€4=53.66-0.02, €4,=26.719... . (77 from theH, (Hz)* term),

Sé:é{l5®+60@+60@+120@}. (79)

According to the rules formulated in Sec. Il B they are of the ordenfand give

| 43333
St=cs—pB% > f CaChCcCyCiEaereseger (79

with the numerical constamiz= s ,+C5 5+ Cs,+ Cs 5.
The four constants introduced here are determined by the dimensionless integrals.

X1 e X127 X2 @ X237 X3 @ X3 @7 X4 @7 X41

1
Cs,== | dxqdx,dxzdx , 80
> 8f P2 Xy X X3 X3 Xag Xq o Xag 0

1 e X1\2e7X2 g7 X1 @7 X13 @7 X34 @ %42 @7 %23
C5,E:Zf dxldxde3dX4< X1 ) X2 Xg Xi3 Xaq Xaz Xoz o

1 e X1\2 e X2\2e X3 e X3 g Xaa [ @ X24) 2
Cs,yzﬂ‘)f dxldxzdx3dx4< Xl) ( Xz) X13 X3 Xa4 X24) , >

1 e M\2e X2 g 13 X3 g %34 g X2e| 2
Cs,azzf dxldxzdxng4( Xl) X2 X13 X3 Xz X24) ~
A numerical evaluatiorithe “irreducible” integrals were estimated by Monte Carlo simulatjogises

C5=168.2+0.6. (89

In the sixth cluster integral we can pick out the contributions stemming from7hg5(term,

\Y
Sé:é{l?O@+l80@+180@+10%+180@}. (85)

The five contributions are again of the ordet, and give

6
| _ 9 3,3,3,3,343
Se= —CGF,B . b;i (o CaCpCcCdCrCy€LELE E4ET Ey , (86)

with the numerical constamig=Cg,+Cg 5+ Cs,+ Cs s+ Cs given by the five dimensionless integrals,

, (87)

e_xl) 2 e_xlz( e_X23> 2 e_X34( e_x45) 207X
1 X12

1
CG'QZZSJ' XmdXZdX3dX4dX5 ( X23 X34 X45 X5
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1 e *1\2 g X12 @~ X23
CG'B:1_6J XmdXZdX3dX4dX5

1 X12  Xa3

e X34\ 2 g7 X5 @7 X5 @ X52
X , (88
X34 X45 X5 Xgp
1 X1\ 2
CG,’}’:§J’ XmdXZdX3dX4dX5( Xl )
e X12 @7 X23 @7 X34 g7 X45 @7 X5 @7 X53 @~ X24
X ,
X12 X3 Xzg Xg5 X5 Xsz  Xpg
(89

———1f dx,dx,dxdx,d —7X1 e
c X1dX,0XzdX,dX
65~ 72 1O XX X Sy Xog

e X3 @ X5 @ X5 @ X52 @7 X14 @7 X3

X : (90)
X34 X45 X5 X2 Xia X3

X1 @7 X12 @7 X23 @7 X34

1
Coe= —J dx;dX,dX30X40Xs X

4 X12 X3 X34
e X5 @7 X5 @7 X51 @7 X24 @7 X3

X . (92
Xg5 X5 X511 Xoq4 X3

BFc s 303
=——-—=——N CaCpes€
V 1277_ Baz’b a“b®a®b
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§In Kl aptas

—n2kB*Y, ccheler
a,b
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The numeric evaluation results in:
Cg=339.8:0.3. (92

According to the rules formulated in Sec. Il B there are
no other terms contributing to the ordef. Thus in this
section we have explicitly calculated all terms of the free
energy of a classical plasma consisting of charges with the
same sign and immersed in a neutralizing background up to
the third order in density. The final result is given in Sec. IV.

IV. FINAL RESULTS AND CONCLUSIONS

The final expression for the interaction part of the Helm-
holtz free-energy density to the ordet is obtained from Eq.
(36) by summing the corresponding contributioSs [Eq.
(47)], Ss [Eqs.(52), (53), (57), (58), (59), (60)], S, [Egs.
(65), (68), (69), (71), (77)], S5 [Eqgs.(79), (84)], andS; [Egs.
(86), (92)] with the following result:

o
gln Klab+ bz

+byndk~1B5 > cicpcceletel—b, ntk3p0 bE | CaCpCeCqeleieled
a,n,c,

a,b,c

272

3 In 2K|ab+

326 4 5.3
—-n ﬁ Eb CaCbCca€€¢
a,b,c

5
ﬂln Klab+c2

—n2B5 cachelen
a,b

—n*k"287 D, caCuCeCql elefeded
a,b,c,d 9

82 7 1
—_— CE_1_2+ §|ﬂ3 |n Klab+C3,8
+n3,86a%C CaChCceaenen

41
—Inkl,p—Cy

77_4
Eln Klab+ C3q

5,3,3,3
- eaebecedc4e}

5 6
n n
8 4 _3.3.3.3 9 3.3,.3,.3,3,.3 3
—cs— B 2 caCuCeCacreienesesei+ce—p° > CaChCcCdCiCye e E €€ €y T 0(N°). (93
k* abedf % abcdf.g

All constants in Eq(93) are given in Sec. lll. In the case of
a one-component plasm@®CP consisting of one sort of
ions with densityn, charge<Z e, and moving in a neutralizing

u(l)=pol ¥+ p I3 INT + p,I'3+ pal¥2InT
+p T2+ pel®In?T + pgl'®InT +p,I'6, (94)

background all thermodynamical functions may be expressed

in terms of the plasma parameier= 8Z%e2(4n/3)Y only.
For the excess internal energy defined by

J(BF:IN)
B

we obtain from Eq(93)

with the constants

1 9
pO:_E\/g! pl:_g!

= 9|3 3c+1 = 27@
p>= gn SCET L pP3= 16V°
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81 ceptual interest, the virial expansion might be useful in

P4=0.2350, ps=— 75 studying regimes with sufficiently low density and/or suffi-
ciently high temperature. However, using virial expansions
pe=—2.0959, p,=0.0676. for practical calculations one has to take into account that a

virial expansion is an asymptotic expansion of the free-
This expansion completes the result of RgX7] for the  energy function. The convergence radius of this asymptotic
smalll’ expansion of the OCP excess internal energy. expansion is unknown. Therefore it does not make sense to
In conclusion, in this paper we have studied the low-extend the region of the low-density limit to higher densities
density expansion of the Helmholtz free energy of a classicapy calculating higher order terms. We conclude therefore
system of pointlike ions embedded in a neutralizing backthat the obtained virial expansion is applicable for practical
ground and interacting via Coulomb forces. Such a purelycalculations only in the low-density regidor in the weak
Coulomb description is appropriate for a large variety ofcoupling regime
physical systems. To obtain the virial expansion of a classi- Finally, the present approach can be generalized to quan-
cal Coulomb system the Hubbard-Schofield transformatioium plasmas. Thus one may employ Morita’s method of ef-
for the configurational integral in collective variables is used fective potentials to map the quantum plasma system with
The original Hamiltonian was mapped onto an Ising-likebare Coulomb interaction to a classical system interacting
Hamiltonian with harmonic and anharmonic contributions.via effective potentials. The latter split into a Coulomb part
The coefficients of the new effective Hamiltonian are givenand a short-range part. Further, one expresses the Coulomb
in terms of the structure factors of a reference system. In ouinteractions through collective variables and maps the origi-
case with pointlike ions the corresponding reference systernal quantum system via the Hubbard-Schofield transforma-
is an ideal gas system. tion to a classical reference system with sole short-range in-
However, it is possible to generalize the present approacteractions. Alternatively one may also use the Feynman-Kac
and to consider mixtures of ions with internal structure, i.e.formalism. However, explicit calculations to the oraerare
systems with additional short-range interactions. In this casguch more complicated as in the classical case.
the corresponding reference system is a system with particles
interacting solely via short-range forces. By introducing
short-range repulsive interactiong,(r) (for example, hard
core repulsions it is also possible to describe systems Valuable discussions with N. V. Brilliantov, W. Ebeling,
of charges with different signs within the presentA. Forster, T. Kahlbaum, and M. Steinberg are gratefully
approach. In this case the corresponding cluster expansiacknowledged. | would also like to thank I. M. Tkachenko
is built with the integrable bondsy,,(r), g2,(r), and and N. V. Brilliantov for a careful reading of the manuscript.
exd — Bu(n] exp:—gab(r)]—1+gab(r)_(1/2)g§b(r) ) This work was supported by the Deutsche Forschungsge-
Expanding the anharmonic contributions of the effectivemeinschaftGermany.
Hamiltonian to the configurational integral we have obtained
the cluster expansion of a classical Coulomb [d&s. (35)].
The exact density expansion of the free energy has been
performed up to the order® [Eq. (93)]. The virial expansion
of other thermodynamic functions can be obtained from Egq. Consider the leading contribution to the third cluster inte-
(93) using thermodynamic identities. Besides its own con-gral in k space representation
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APPENDIX A: CALCULATION OF CONSTANT
B; AND B,,

1 n?V (1) o o [dkidEadEs  Am

gi 3 A = ) 2191 (%:ccacbcc lablaclbc/ (27!')9 k%+h’2
47 4 47 4 (A1)
Y 2 1.2 2 7. N2 ~ ] . Al

k2 +h L3 + Kk (kl —kz) +K2 (k’g - kl) ‘l‘ Kz

[
. .1 1
Substitutingx; =k; /x one expr the leading term of th H(y)=| dx—5—=—=5—. (A3)
upstutngx; i/ kK One expresses e leal gte 0 e x2+1(x+y)2+1

third cluster integral through the constamt with

Performing the integration over one obtains

1o [dxx 2 y
by=— f 1%(xy), A2 y)=—o :
3= 3 1 (X1) (A2) 1(y) y arctart; (A4)

Now in Eq. (A2) the integration ovek, can be carried out
where and one obtainf46]
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7 1,3 (1 vnd o 2%
b=2n’| gy lelg] | B9 s S cacdiii | dhT o)
a,b X2
Using the properties of Euler’s dilogarithm one arrives at Eq. Lok (1 40K)2
(53). T3 ﬁi .- J(x2—>0)+o(n3).
Consider now the constahy, , defined in Eq(66). Using 3Ix; 4l
the Fourier representation of dxpx]/x we get a similar rep- (B5)

resentation as fao; [Eq. (A2)],
We get withJ(x,—0)=7%/x, the following expression:

dxyx3 - 3
= 12(x1), (AB) mvn
f(Xl-i— 1)2 " 0183= 6 ;b:c Cacbcclzzibleziclﬁc
with the samel(;?) given by Egs.(A3) and (A4). The re- o xR e 22 -
maining integration in Eq(A6) leads to the result X “”:) Ii'm f dXzTJ(XZHXzW
€— — 0 € ac
2
_377___3'_f_ | ek ook 1 (140k)2
bsa=27 15~ 5?7 —Lig 7| +3In3|. (A7) " exp[_ ack| ,, lack 1 "L o(nd).
X2 X2 2 X5
Further transformations lead to the more compact expression (B6)
Eq. (68).

After integration and performing the limiting procedures we
obtain the result E¢(57).
Up to the ordem® one represents E@56) after integra-
After integration over one volume integral and up to thetion over one volume integral as follows:
ordern® one represents E@55) in the following manner:

APPENDIX B: CALCULATION OF 6,85 AND 6,S;

3 > 2 1,
3 0,83=—Vn 2 CaCpCc | dri1dragan(rio)5 dhe(ra)
Vn . L1 9 a,b,c 2
0183=—— Z CaCchf dridry5 gap(ri2)
6 a,b,c 2

+o(nd). (B7)

1 2
X q)ac(rz)_ Egac(rz)

1
X5 05cr1) Pacl(rz)+o(n®). (BL)
Introducing dimensionless variablgs= xr; and performing
With the dimensionless variable;$= KFi one has the integration ovex, one obtains

ee]
8,83=—4TVN® D, CaCoCel anlSdl2, f dX,X,
0

8183=—— 2 CaCuCel 201242, abic
x{e X[ Ei(—X,) +In3]—e2 Ei(—3x,)}
xj dx (e_zxz lack -ax,
Xo ~ .38 —1e ¥ ke
2x2 31x3 - lack T 3
2 2 X 6 @ +24 2 +o(n®).
5 2 2
(IacK) —4x 3
———e ¥ +...| J(xp)+0(n%, (B2 (B8)
41x5

The higher order terms containing @xpﬁlxz]/x‘z‘. .. can be
where substituted by their smal, expansion to cut the singularity
at smallx,. One gets
. e—2x12 e—2xl

J(Xp)= [ dXx , B3 *

(xz) ! Xiz Xi (B3) 5283:_47Tzvn3a2bc CaCchlablgclgcfo dxoX,

is representable as X{e *2[Ei(—X,)+In3]— €2 Ei(—3x,)}
—1e % laeck 1 (k)% 1
> 1 .,(47T)2 k iK-x X — _2X2 act - lac/

= — @ K72 2 -
J(X5) (277)34[ dk 2 arctaﬁ2 e . (B9 6 3 41 4 51 35
X (Cg—1+In3x,)+0(n®). (B9)

Within the ordero(n®) we can substitute the contributions
with exp[—3x2]/3!x§~ - - etc. by their smalk, expansions to Summing up the singular a,=0 contributions a finite ex-
get a convergent expression, pression is obtained,
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* or
5283: _4772Vn3 2 CaCbCCI ablgclgcf dX2X2
ab,c 0 4 e—3x
- Y 4 4.4.3.3 o
X{e_XZ[Ei(_X2)+|n 3]_eX2 El(_3X2)} 5184_ 4K4IB a,bE,c,d CaCchCdeaebecedJ dx 6X3 ‘J4(X)
—le ZXS lapc (1 K)Z
— - (Ce—1+In3x,) _| @bt tact) +o(n3
6 3 (law)® ’ Al e J4(x—0)+o(n%, (CI
lack lack (IacK)z (IacK)S where
R T T e T e 3
’ ’ 2% 0% j drds e Pe X2 g %13 .
+o(nd). (B10) Ja(x1)= | dxadxs 2 % i (CH
The remaining convergent integral can be calculated by in;g representable as
troducing an upper and lower bound and then by performing
the limiting procedure tee and 0, respectively. After some R 1 _ (4m)? 4m K o -
lengthy calculations one arrives at H§9). Ja(x)= f dk —arctan; e K%,
=G ) Mere x
(CH

APPENDIX C: CALCULATION OF 6,8,

. . _ 2
The first diagram in Eq(70) represents a divergent con- |2aKing into account thai,(0)=8"/3 we get the conver-

tribution. Consider therefore the convergent correction to thg€nt expression
leading contribution of the first diagram in E@3),

avn*
5184:_ 37 E Cacbcccdegeéegeg
a,b,c,d
. (Cl) xR e—3X ) 87T2
X lim Iimf dx Ja(X) —X——
e—0 R—x J€ 6x 4( ) 3(|abK)3
. . 3 .
Within the ordero(n*) one obtains | ok Lok 1 (1ipK)?
n* kel T x 2 g2
5154:— 2 CaCbCCCdJ dFaded ch Fd X
4 a,b,c,d 1 (| )3
K
1 +s S }+o(n3). (CH)
X2 (Dab(rab)_Eggb(rab)}gac(rac) Ibd(Tba) X
1 After integration and performing the limiting procedures one
e 3 gets the logarithmic contribution of E¢/1) and the constant
ngcd(rcd)+o(n ) (CZ) C4a [Eq (72)]
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